Giải câu 1 trang 70 toán VNEN 8 tập 1
29 lượt xem
Câu 1: Trang 70 toán VNEN 8 tập 1
Cho tam giác ABC, các đường trung tuyến BD, CE. Gọi M, N theo thứ tự là trung điểm BE, CD. Gọi I, K theo thứ tự là giao điểm của MN với BD, CE. Chứng minh rằng MI = IK = KN.
Bài làm:
Đặt BC = a.
Vì tam giác ABC có AE = EB, AD = DC nên ED là đường trung bình, do đó ED // BC và ED =
Do MN là đường trung bình của hình thang BEDC nên MN // ED // BC.
Tam giác BED có BM = ME, MI // ED nên MI là đường trung bình, MI =
Tam giác CED có CN = ND, NK // ED nên NK là đường trung bình, NK =
Tam giác EBC có EM = MB, MK // BC nên MK là đường trung bình, MK =
Suy ra IK = MK – MI =
Vậy MI = IK = KN.
Xem thêm bài viết khác
- Giải câu 1 trang 46 toán VNEN 8 tập 1 phần C
- Giải phần D. Hoạt động vận dụng trang 141, 142 sách Toán Vnen 8 tập 1
- Giải câu 4 trang 46 toán VNEN 8 tập 1
- Giải câu 7 trang 59 toán VNEN 8 tập 1
- Giải câu 4 trang 41 sách VNEN toán 8 tập 1
- Giải câu 3 trang 69 toán VNEN 8 tập 1
- Giải câu 4 trang 126 toán VNEN 8 tập 1
- Giải câu 1 trang 25 toán VNEN 8 tập 1
- Giải câu 1 trang 101 toán VNEN 8 tập 1
- Giải VNEN toán 8 bài 7: Phân tích đa thức thành nhân tử bằng phương pháp nhóm hạng tử và phối hợp nhiều phương pháp
- Giải câu 2 trang 51 toán VNEN 8 tập 1 phần D. E
- Giải câu 1 trang 89 toán VNEN 8 tập 1