Lời giải Bài 4 Đề thi thử lên lớp 10 môn toán lần 2 năm 2017 của Trường THPT chuyên Thái Bình
1 lượt xem
Bài làm:
Lời giải bài 4 :
Đề ra :
Cho đường tròn tâm O đường kính AB = 2R. Gọi C là trung điểm của OA; qua C kẻ đường thẳng vuông góc với OA cắt đường tròn đó tại hai điểm phân biệt M và N. Trên cung nhỏ BM lấy điểm K ( K khác B và M), trên tia KN lấy điểm I sao cho KI = KM. Gọi H là giao điểm của AK và MN. Chứng minh rằng:
a. Tứ giác BCHK là tứ giác nội tiếp.
b. AK.AH = R2 .
c. NI = BK .
Lời giải chi tiết:
a. Ta có :
=> Tứ giác BCHK nội tiếp .
b. Ta có :
=>
Mà : AB = 2R =>
C là trung điểm của AO =>
=>
c. Ta có:
=>
=>
Xét
- MK = MI ( cạnh tam giác đều KMI ) .
( cùng cộng với góc BMI bằng 600 ) - MB = MN ( cạnh tam giác đều BMN )
=>
=> NI = BK . ( đpcm )
Xem thêm bài viết khác
- Lời giải Bài 1 Đề thi thử lên lớp 10 môn toán lần 1 năm 2017 của Trường THPT chuyên Thái Bình
- Lời giải Bài 2 Đề thi thử lên lớp 10 môn toán lần 1 năm 2017 của Trường THPT chuyên Thái Bình
- Đề thi thử lên lớp 10 môn toán lần 2 năm 2017 Trường THPT chuyên Vinh
- Lời giải Câu 4 Đề thi thử lên lớp 10 môn toán lần 2 năm 2017 của trường THPT chuyên Lê Qúy Đôn
- Lời giải Bài 2 Đề thi thử lên lớp 10 môn toán lần 1 năm 2017 của trường THPT chuyên TP HCM
- Đề thi thử lên lớp 10 môn toán lần 3 năm 2017 Trường chuyên Đà Nẵng
- Lời giải Bài 2 Đề thi thử lên lớp 10 môn toán lần 1 năm 2017 của Trường chuyên Lam Sơn Thanh Hóa
- Lời giải Câu 3 Đề thi thử lên lớp 10 môn toán lần 1 năm 2017 của trường THPT chuyên Lê Qúy Đôn
- Đề thi thử lên lớp 10 môn toán lần 2 năm 2017 Trường chuyên TP HCM
- Lời giải Bài 3 Đề thi thử lên lớp 10 môn toán lần 4 năm 2017 của Trường chuyên Lam Sơn Thanh Hóa
- Lời giải Bài 5 Đề thi thử lên lớp 10 môn toán lần 2 năm 2017 của trường THPT chuyên Sư Phạm Hà Nội
- Lời giải Bài 2 Đề thi thử lên lớp 10 môn toán lần 3 năm 2017 của Trường chuyên Lam Sơn Thanh Hóa