Giải câu 59 Bài: Luyện tập sgk Toán 9 tập 2 Trang 90
7 lượt xem
Câu 59: Trang 90 - SGK Toán 9 tập 2
Cho hình bình hành ABCD. Đường tròn đi qua ba đỉnh A, B, C cắt đường thẳng CD tại P khác C. Chứng minh AP = AD.
Bài làm:
Trong (O), dây cung PC // dây cung AB (do AB // CD) => cung CB = cung AP (2 dây cung // chắn 2 cung bằng nhau)
=> cung CB + cung CP = cung AP + cung CP
=> cung BP = cung AC
=>
ABCP có: AB // CP (cmt) => ABCP là hình thang. Lại có:
=> ABCP là hình thang cân (dấu hiệu nhận biết)
=> AP = BC (định nghĩa hình thang cân)
Mà BC = AD (2 cạnh đối diện của hình bình hành ABCD)
=> AP = AD (= BC)
Xem thêm bài viết khác
- Toán 9: Đề kiểm tra học kì 2 (Đề 9)
- Đáp án câu 4 đề 3 kiểm tra học kì 2 Toán 9
- Lời giải bài 58 Ôn tập chương 4 Đại số 9 Trang 63,64 SGK
- Giải câu 77 Bài 10: Diện tích hình tròn, hình quạt tròn sgk Toán 9 tập 2 Trang 98
- Giải câu 14 bài 3: Giải hệ phương trình bằng phương pháp thế sgk Toán đại 9 tập 2 Trang 15
- Đáp án câu 2 đề 1 kiểm tra học kì 2 Toán 9
- Giải Câu 37 Bài 5: Góc có đỉnh ở bên trong đường tròn. Góc có đỉnh ở bên ngoài đường tròn sgk Toán 9 tập 2 Trang 82
- Giải câu 18 bài 5: Công thức nghiệm thu gọn sgk Toán đại 9 tập 2 Trang 49
- Giải bài 2: Hệ hai phương trình bậc nhất hai ẩn sgk Toán đại 9 tập 2 Trang 8 12
- Đáp án câu 4 đề 10 kiểm tra học kì 2 Toán 9
- Giải câu 56 Bài: Luyện tập sgk Toán 9 tập 2 Trang 89
- Giải câu 13 bài 3: Giải hệ phương trình bằng phương pháp thế sgk Toán đại 9 tập 2 Trang 15