khampha khao co hoc 32530 bi an chu viet thoi hung vuong
- Đề thi học kì 2 lớp 11 môn Vật lí trường Quốc học Quy Nhơn năm 2022 Đề thi học kì 2 lớp 11 môn Vật lí trường Quốc học Quy Nhơn năm 2022 là tài liệu tham khảo hữu ích được KhoaHoc đăng tải, giúp học sinh chuẩn bị ôn thi cuối kì 2 lớp 11 đạt kết quả cao. Xếp hạng: 3
- Đề thi học kì 2 lớp 11 môn Vật lí trường THPT Trần Cao Vân năm 2022 Đề thi học kì 2 lớp 11 môn Vật lí trường THPT Trần Cao Vân năm 2022 được KhoaHoc đăng tải nhằm hỗ trợ học sinh ôn thi cuối kì 2 lớp 11 đạt hiệu quả cao. Xếp hạng: 3
- Hãy làm một bài thơ bốn câu hoặc tám câu, mỗi câu có tám chữ, về một chủ đề để tự chọn 4. Hãy làm một bài thơ bốn câu hoặc tám câu, mỗi câu có tám chữ, về một chủ đề để tự chọn Xếp hạng: 3
- Phong trào Cần Vương bùng nổ trong hoàn cảnh nào? Hướng dẫn trả lời câu hỏi giữa bàiCâu 1: Trang 125 – sgk lịch sử 11Phong trào Cần Vương bùng nổ trong hoàn cảnh nào? Xếp hạng: 3
- Giải Bài 3: Đường thẳng vuông góc với mặt phẳng Khi nào một đường thẳng vuông góc với mặt phẳng? Trong thực tế, hình ảnh của sợi dây dọi vuông góc với nền nhà cho ta khái niệm về sự vuông góc của đường thẳng và mặt phẳng. KhoaHoc sẽ tóm tắt kiến thức cần nhớ và hướng dẫn giải các bài tập một cách chi tiết, dễ hiểu cho bài học: "Đường thẳng vuông góc với mặt phẳng". Hy vọng đây là tài liệu có ích với các em. Xếp hạng: 3
- Dựa theo mức nước trong ống thủy tinh, người ta có thể biết thời điểm thời tiết nóng hay lạnh. Hãy giải thích tại sao? trang 64 sgk vật lí 6 C9: trang 64 - sgk vật lí 6Dụng cụ đo độ nóng, lạnh đầu tiên của loài người do nhà bác học Galilê ( 1564 - 1642 ) sáng chế. Nó gồm một bình cầu có gắn một ống thủy tinh. Hơ nóng bình rồi Xếp hạng: 3
- Giải Câu 3 Bài 4: Hai mặt phẳng vuông góc Câu 3; Trang 113 - SGK Hình học 11Trong mặt phẳng \((\alpha)\) cho tam giác \(ABC\) vuông ở \(B\). Một đoạn thẳng \(AD\) vuông góc với \((\alpha)\) tại \(A\). Chứng minh rằng:a) \(\widehat {ABD}\) là góc giữ Xếp hạng: 3
- Giải Câu 5 Bài 2: Hai đường thẳng vuông góc Câu 5: Trang 98 - SGK Hình học 11Cho hình chóp tam giác \(S.ABC\) có \(SA = SB = SC\) và có \(\widehat{ABC}= \widehat{BSC}=\widehat{CSA}.\) Chứng minh rằng \(SA ⊥ BC, SB ⊥ AC, SC ⊥ AB\). Xếp hạng: 3
- Giải Câu 1 Bài 4: Hai mặt phẳng vuông góc Câu 1: Trang 113 - SGK Hình học 11Cho ba mặt phẳng $(\alpha ),(\beta ),(\gamma )$ những mệnh đề nào sau đây đúng?a) Nếu (α) ⊥ (β) và (α) // () thì (β) ⊥ $(\gamma )$b) Nếu (α) ⊥ (β) và (α) ⊥ $(\gamma Xếp hạng: 3
- Giải Câu 4 Bài 2: Hai đường thẳng vuông góc Câu 4: Trang 98 - SGK Hình học 11Trong không gian cho hai tam giác đều \(ABC\) và \(ABC'\) có chung cạnh \(AB\) và nằm trong hai mặt phẳng khác nhau. Gọi \(M, N, P, Q\) lần lượt là trung điểm của các cạn Xếp hạng: 3
- Giải Câu 4 Bài 4: Hai mặt phẳng vuông góc Câu 4: Trang 114 - SGK Hình học 11Cho hai mặt phẳng \((\alpha)\), \((\beta)\) cắt nhau và một điểm \(M\) không thuộc \((\alpha)\) và không thuộc \((\beta)\). Chứng minh rằng qua điểm \(M\) có một và chỉ m Xếp hạng: 3
- Giải Câu 7 Bài 4: Hai mặt phẳng vuông góc Câu 7: Trang 114 - SGK Hình học 11Cho hình hộp chữ nhật \(ABCD.A'B'C'D'\) có \(AB = a, BC = b, CC' = c\).a) Chứng minh rằng mặt phẳng \((ADC'B')\) vuông góc với mặt phẳng \((ABB'A')\).b) Tính độ dài đườn Xếp hạng: 3
- Giải Câu 1 Bài 2: Hai đường thẳng vuông góc Câu 1: Trang 97 - SGK Hình học 11Cho hình lập phương \(ABCD.EFGH\). Hãy xác định góc giữa các cặp vectơ sau đây:a) \(\overrightarrow{AB}\) và \(\overrightarrow{EG};\) Xếp hạng: 3
- Giải Câu 3 Bài 2: Hai đường thẳng vuông góc Câu 3: Trang 97 - SGK Hình học 11a) Trong không gian nếu hai đường thẳng a và b cùng vuông góc với đường thẳng c thì a và b có song song với nhau không?b) Trong không gian nếu đường thẳng a vuông gó Xếp hạng: 3
- Giải Câu 6 Bài 2: Hai đường thẳng vuông góc Câu 6: Trang 98 - SGK Hình học 11Trong không gian cho hai hình vuông \(ABCD\) và \(ABC'D'\) có chung cạnh \(AB\) và nằm trong hai mặt phẳng khác nhau, lần lượt có tâm \(O\) và \(O'\). Chứng minh rằng \(AB  Xếp hạng: 3
- Giải Câu 7 Bài 2: Hai đường thẳng vuông góc Câu 7: Trang 98 - SGK Hình học 11Cho \(S\) là diện tích tam giác \(ABC\). Chứng minh rằng: \(S=\frac{1}{2}\sqrt{\overrightarrow{AB}^{2}.\overrightarrow{AC}^{2}-(\overrightarrow{AB}.\overrightarrow{AC})^{2}}.\) Xếp hạng: 3
- Giải Câu 5 Bài 4: Hai mặt phẳng vuông góc Câu 5: Trang 114 - SGK Hình học 11Cho hình lập phương \(ABCD.A'B'C'D'\). Chứng minh rằng:a) Mặt phẳng \((AB'C'D)\) vuông góc với mặt phẳng \((BCD'A')\);b) Đường thẳng \(AC'\) vuông góc với mặt phẳng \( Xếp hạng: 3
- Giải Câu 6 Bài 4: Hai mặt phẳng vuông góc Câu 6: Trang 114 - SGK Hình học 11Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là một hình thoi cạnh \(a\) và có \(SA = SB = SC = a\). Chứng minh rằng:a) Mặt phẳng \((ABCD)\) vuông góc với mặt phẳng \((SBD)\);b) Xếp hạng: 3
- Giải Câu 8 Bài 4: Hai mặt phẳng vuông góc Câu 8: Trang 114 - SGK Hình học 11Tính độ dài đường chéo của một hình lập phương cạnh \(a\). Xếp hạng: 3