photos image 052013 24 cau ca1
- Giải câu 1 bài 4: Hai mặt phẳng song song Câu 1: Trang 71 - SGK hình học 11Trong mặt phẳng (α) cho hình bình hành ABCD. Qua A, B, C, D lần lượt vẽ bốn đường thẳng a, b, c, d song song với nhau và không nằm trên (α). Trên a, b và c lần lượt
- Giải câu 3 bài 4: Hai mặt phẳng song song Câu 3: Trang 71 - SGK hình học 11Cho hình hộp ABCD.A’B’C’D’.a) chứng minh rằng hai mặt phẳng (BDA’) và (B’D’C) song song với nhau.b) Chứng minh rằng đường chéo AC’ đi qua trọng tâm G1 và
- Giải câu 13 bài Ôn tập chương 5: Đạo hàm Câu 13: trang 177 sgk toán Đại số và giải tích 11Cho \(f(x) = {{{x^3}} \over 3} + {{{x^2}} \over 2} + x\)Tập nghiệm của bất phương trình \(f’(x) ≤ 0\)A. \(Ø\)B. \((0, +∞)\)C. \([-2, 2]\)D. \((-∞, +∞)\)
- Giải câu 2 bài 4: Hai mặt phẳng song song Câu 2: Trang 71 - SGK hình học 11Cho hình lăng trụ tam giác ABC.A’B’C’. Gọi M và M’ lần lượt là trung điểm của các cạnh BC và B’C’.a) Chứng minh rằng AM song song với A’M’.b) Tìm giao điể
- Giải câu 1 bài Ôn tập chương 5: Đạo hàm Câu 1: trang 176 sgk toán Đại số và giải tích 11Tính đạo hàm của các hàm số saua) \(y = {{{x^3}} \over 3} - {{{x^2}} \over 2} + x - 5\)b) \(y = {2 \over x} - {4 \over {{x^2}}} + {5 \over {{x^3}}} - {6 \over {7{x^4}}}\)
- Giải câu 6 bài Ôn tập chương 5: Đạo hàm Câu 6: trang 176 sgk toán Đại số và giải tích 11Cho \({f_1}\left( x \right) = {{\cos x} \over x};{f_2}\left( x \right) = x\sin x\)Tính \({{{f_1}'(1)} \over {{f_2}'(1)}}\)
- Giải câu 11 bài ôn tập chương 4: Giới hạn Câu 11: trang 143 sgk toán Đại số và giải tích 11Cho dãy số \((u_n)\) với : \(u_n = \sqrt 2 + (\sqrt2)^2+......+( \sqrt 2)^n\)Chọn mệnh đề đúng trong các mệnh đề sau:A. \(\lim {u_n} = \sqrt 2 + {(\s
- Giải câu 12 bài ôn tập chương 4: Giới hạn Câu 12: trang 144 sgk toán Đại số và giải tích 11Chọn đáp án đúng\(\mathop {\lim }\limits_{x \to {1^ - }} {{ - 3x - 1} \over {x - 1}}\) bằng:A. \(-1\) B. \(-∞\)C. \(-3\)D. \(+∞\)
- Giải câu 3 bài 2: Quy tắc tính đạo hàm Câu 3: trang 163 sgk toán Đại số và giải tích 11Tìm đạo hàm của các hàm số sau:a) \(y = {({x^{7}} - 5{x^2})^3}\);b)\(y = ({x^2} + 1)(5 - 3{x^2})\);c) \(y = \frac{2x}{x^{2}-1}\);d) \(y = \frac{3-5x}{x^{2}-x+
- Giải câu 5 bài 2: Quy tắc tính đạo hàm Câu 5: trang 163 sgk toán Đại số và giải tích 11Cho \(y = x^3-3x^2+ 2\).Tìm \(x\) để :a) \(y' > 0\)b) \(y' < 3\)
- Giải câu 3 bài Ôn tập chương 5: Đạo hàm Câu 3: trang 176 sgk toán Đại số và giải tích 11Cho hàm số \(f(x) = \sqrt {1 + x} \)Tính \(f(3)+(x-3)f’(3)\)
- Giải câu 7 bài Ôn tập chương 5: Đạo hàm Câu 7: trang 176 sgk toán Đại số và giải tích 11Viết phương trình tiếp tuyến:a) Của hypebol \(y = {{x + 1} \over {x - 1}}\)tại \(A (2, 3)\)b) Của đường cong \(y = x^3+ 4x^2– 1\) tại điểm có hoành
- Giải câu 10 bài Ôn tập chương 5: Đạo hàm Câu 10: trang 177 sgk toán Đại số và giải tích 11Với \(g(x) = {{{x^2} - 2x + 5} \over {x - 1}}\); \(g’(2)\) bằng:A. \(1\)B. \(-3\)C. \(-5\)D. \(0\)
- Giải câu 2 bài Ôn tập chương 5: Đạo hàm Câu 2: trang 176 sgk toán Đại số và giải tích 11Tính đạo hàm của các hàm số saua) \(y = 2\sqrt x {\mathop{\rm sinx}\nolimits} - {{\cos x} \over x}\)b) \(y = {{3\cos x} \over {2x + 1}}\)c) \(y = {{{t^2} + 2\cot t}
- Giải câu 11 bài Ôn tập chương 5: Đạo hàm Câu 11: trang 177 sgk toán Đại số và giải tích 11Nếu \(f(x) = sin^3 x+ x^2\) thì \(f''({{ - \pi } \over 2})\) bằng:A. \(0\)B. \(1\)C. \(-2\)D. \(5\)
- Giải câu 12 bài Ôn tập chương 5: Đạo hàm Câu 12: trang 177 sgk toán Đại số và giải tích 11Giả sử \(h(x) = 5 (x + 1)^3+ 4(x + 1)\)Tập nghiệm của phương trình \(h’’(x) = 0\) là:A. \([-1, 2]\)B. \((-∞, 0]\)C. \({\rm{\{ }} - 1\} \)D. \(Ø\)
- Giải câu 13 bài ôn tập chương 4: Giới hạn Câu 13: trang 144 sgk toán Đại số và giải tích 11Chọn đáp án đúng:Cho hàm số: \(f(x) = {{1 - {x^2}} \over x}\) bằng:A. \(+∞\)B. \(1\)C. \(-∞\)D. \(-1\)
- Giải câu 14 bài ôn tập chương 4: Giới hạn Câu 14: trang 144 sgk toán Đại số và giải tích 11Chọn đáp án đúngCho hàm số: \(f(x) = \left\{ \matrix{{{3 - x} \over {\sqrt {x + 1} - 2}};\text{ nếu } x \ne 3 \hfill \cr m;\text{ nếu }x = 3 \hf
- Giải câu 1 bài 2: Quy tắc tính đạo hàm Câu 1: trang 162 sgk toán Đại số và giải tích 11Bằng định nghĩa, tìm đạo hàm của các hàm số sau:a) \(y = 7 + x - x^2\) tại \(x_0 = 1\);b) \(y = x^3- 2x + 1\) tại \(x_0= 2\).
- Giải câu 4 bài Ôn tập chương 5: Đạo hàm Câu 4: trang 176 sgk toán Đại số và giải tích 11Cho hai hàm số \(f(x) = \tan x,\,(g(x) = {1 \over {1 - x}}\) .Tính \({{f'(0)} \over {g'(0)}}\)
- Giải câu 5 bài Ôn tập chương 5: Đạo hàm Câu 5: trang 176 sgk toán Đại số và giải tích 11Giải phương trình \(f’(x) = 0\),biết rằng:\(f(x) = 3x + {{60} \over x} -{ 64\over{x^{ 3}}} + 5\)
- Giải câu 15 bài ôn tập chương 4: Giới hạn Câu 15: trang 144 sgk toán Đại số và giải tích 11Cho phương trình: \(-4x^3+ 4x – 1 = 0\)Mệnh đề sai là:A. Hàm số \(f(x) = -4x^3+ 4x – 1\) liên tục trên \(\mathbb R\)B. Phương trình (1) không có nghiệm t
- Giải câu 2 bài 2: Quy tắc tính đạo hàm Câu 2: trang 163 sgk toán Đại số và giải tích 11Tìm đạo hàm của các hàm số sau:a) \(y = x^5- 4 x^3+ 2x - 3\);b) \(y = \frac{1}{4} - \frac{1}{3}x + x^2 - 0,5x^4\);c) \(y = \frac{x^{4}}{2}\)&
- Giải câu 4 bài 2: Quy tắc tính đạo hàm Câu 4: trang 163 sgk toán Đại số và giải tích 11Tìm đạo hàm của các hàm số sau:a) \(y = x^2 - x\sqrt x + 1\);b) \(y = \sqrt {(2 - 5x - x^2)}\);c) \(y = \frac{x^{3}}{\sqrt{a^{2}-x^{2}}}\) ( \(