khampha 1001 bi an 38569 Su that ve anh sang noi phia cuoi duong ham
- Giải câu 3 bài 2: Cực trị của hàm số Bài 3: Trang 18 - sgk giải tích 12Chứng minh rằng hàm số $y=\sqrt{|x|}$ không có đạo hàm tại x=0 nhưng vẫn đạt cực tiểu tại điểm đó. Xếp hạng: 3
- Giải câu 7 bài 2: Giới hạn của hàm số Câu 7: trang 133 sgk toán Đại số và giải tích 11Một thấu kính hội tụ có tiêu cự là \(f\). Gọi \(d\) và \(d'\) lần lượt là khoảng cách từ một vật thật \(AB\) và từ ảnh \(A'B'\) của nó tớ Xếp hạng: 3
- Giải câu 5 bài 2: Quy tắc tính đạo hàm Câu 5: trang 163 sgk toán Đại số và giải tích 11Cho \(y = x^3-3x^2+ 2\).Tìm \(x\) để :a) \(y' > 0\)b) \(y' < 3\) Xếp hạng: 3
- Giải câu 1 bài Ôn tập chương 5: Đạo hàm Câu 1: trang 176 sgk toán Đại số và giải tích 11Tính đạo hàm của các hàm số saua) \(y = {{{x^3}} \over 3} - {{{x^2}} \over 2} + x - 5\)b) \(y = {2 \over x} - {4 \over {{x^2}}} + {5 \over {{x^3}}} - {6 \over {7{x^4}}}\) Xếp hạng: 3
- Giải câu 2 bài Ôn tập chương 5: Đạo hàm Câu 2: trang 176 sgk toán Đại số và giải tích 11Tính đạo hàm của các hàm số saua) \(y = 2\sqrt x {\mathop{\rm sinx}\nolimits} - {{\cos x} \over x}\)b) \(y = {{3\cos x} \over {2x + 1}}\)c) \(y = {{{t^2} + 2\cot t} Xếp hạng: 3
- Giải câu 3 bài Ôn tập chương 5: Đạo hàm Câu 3: trang 176 sgk toán Đại số và giải tích 11Cho hàm số \(f(x) = \sqrt {1 + x} \)Tính \(f(3)+(x-3)f’(3)\) Xếp hạng: 3
- Giải câu 10 bài Ôn tập chương 5: Đạo hàm Câu 10: trang 177 sgk toán Đại số và giải tích 11Với \(g(x) = {{{x^2} - 2x + 5} \over {x - 1}}\); \(g’(2)\) bằng:A. \(1\)B. \(-3\)C. \(-5\)D. \(0\) Xếp hạng: 3
- Giải câu 12 bài Ôn tập chương 5: Đạo hàm Câu 12: trang 177 sgk toán Đại số và giải tích 11Giả sử \(h(x) = 5 (x + 1)^3+ 4(x + 1)\)Tập nghiệm của phương trình \(h’’(x) = 0\) là:A. \([-1, 2]\)B. \((-∞, 0]\)C. \({\rm{\{ }} - 1\} \)D. \(Ø\) Xếp hạng: 3
- Giải câu 1 bài 2: Hàm số y = ax + b Câu 1: Trang 41, 42 - sgk đại số 10Vẽ đồ thị của các hàm số:a) $y = 2x - 3$b) $y = \sqrt{2}$c) $y=-\frac{3}{2}x+7$d) $y=|x|-1$ Xếp hạng: 3
- Giải câu 4 bài Ôn tập chương 5: Đạo hàm Câu 4: trang 176 sgk toán Đại số và giải tích 11Cho hai hàm số \(f(x) = \tan x,\,(g(x) = {1 \over {1 - x}}\) .Tính \({{f'(0)} \over {g'(0)}}\) Xếp hạng: 3
- Giải câu 5 bài Ôn tập chương 5: Đạo hàm Câu 5: trang 176 sgk toán Đại số và giải tích 11Giải phương trình \(f’(x) = 0\),biết rằng:\(f(x) = 3x + {{60} \over x} -{ 64\over{x^{ 3}}} + 5\) Xếp hạng: 3
- Giải câu 7 bài Ôn tập chương 5: Đạo hàm Câu 7: trang 176 sgk toán Đại số và giải tích 11Viết phương trình tiếp tuyến:a) Của hypebol \(y = {{x + 1} \over {x - 1}}\)tại \(A (2, 3)\)b) Của đường cong \(y = x^3+ 4x^2– 1\) tại điểm có hoành Xếp hạng: 3
- Giải câu 11 bài Ôn tập chương 5: Đạo hàm Câu 11: trang 177 sgk toán Đại số và giải tích 11Nếu \(f(x) = sin^3 x+ x^2\) thì \(f''({{ - \pi } \over 2})\) bằng:A. \(0\)B. \(1\)C. \(-2\)D. \(5\) Xếp hạng: 3
- Giải câu 3 bài 2: Hàm số y = ax + b Câu 3: Trang 42 - sgk đại số 10Viết phương trình $y = ax + b$ của các đường thẳng:a) Đi qua hai điểm $A(4;3), B(2 ; -1$;b) Đi qua điểm $A(1 ; -1)$ và song song với Ox. Xếp hạng: 3
- Giải câu 1 bài 2: Quy tắc tính đạo hàm Câu 1: trang 162 sgk toán Đại số và giải tích 11Bằng định nghĩa, tìm đạo hàm của các hàm số sau:a) \(y = 7 + x - x^2\) tại \(x_0 = 1\);b) \(y = x^3- 2x + 1\) tại \(x_0= 2\). Xếp hạng: 3
- Giải câu 2 bài 2: Quy tắc tính đạo hàm Câu 2: trang 163 sgk toán Đại số và giải tích 11Tìm đạo hàm của các hàm số sau:a) \(y = x^5- 4 x^3+ 2x - 3\);b) \(y = \frac{1}{4} - \frac{1}{3}x + x^2 - 0,5x^4\);c) \(y = \frac{x^{4}}{2}\)& Xếp hạng: 3
- Giải câu 4 bài 2: Quy tắc tính đạo hàm Câu 4: trang 163 sgk toán Đại số và giải tích 11Tìm đạo hàm của các hàm số sau:a) \(y = x^2 - x\sqrt x + 1\);b) \(y = \sqrt {(2 - 5x - x^2)}\);c) \(y = \frac{x^{3}}{\sqrt{a^{2}-x^{2}}}\) ( \( Xếp hạng: 3
- Giải câu 2 bài 2: Hàm số y = ax + b Câu 2: Trang 42 - sgk đại số 10Xác định a, b để đồ thị của hàm số y = ax + b đi qua các điểm:a) $A(0;3)$ và $B(\frac{3}{5};0)$b) $A(1; 2)$ và $B(2; 1)$c) $A(15; -3)$ và $B(21; -3)$. Xếp hạng: 3
- Giải câu 4 bài 2: Hàm số y = ax + b Câu 4: Trang 42 - sgk đại số 10Vẽ đồ thị của các hàm số :a) $y=\left\{\begin{matrix}2x (x\geq 0) & \\ \frac{-1}{2}x (x<0) & \end{matrix}\right.$ b) $y=\left\{\begin{matrix}x+1 (x\geq 1) & \\ Xếp hạng: 3