doisong yhoc suc khoe 12196 Axit Folic co the giup ngan ngua tat sut moi va ho ham ech
- Trắc nghiệm đại số 10 bài 1: Hàm số (P2) Câu hỏi và bài tập trắc nghiệm đại số 10 bài 1: Hàm số (P2). Học sinh luyện tập bằng cách chọn đáp án của mình trong từng câu hỏi. Dưới cùng của bài trắc nghiệm, có phần xem kết quả để biết bài làm của mình. Kéo xuống dưới để bắt đầu nhé!
- Giải bài: Ôn tập chương II - hàm số bậc nhất Bài học tóm tắt toàn bộ kiến thức chương II: Hàm số bậc nhất. Dựa vào cấu trúc SGK toán lớp 9 tập 1, KhoaHoc sẽ tóm tắt lại hệ thống lý thuyết và hướng dẫn giải các bài tập 1 cách chi tiết, dễ hiểu. Hi vọng rằng, đây sẽ là tài liệu hữu ích giúp các em học tập tốt hơn
- Giải câu 1 bài 2: Giới hạn của hàm số Câu 1: trang 132 sgk toán Đại số và giải tích 11Dùng định nghĩa tìm các giới hạn sau:a) \(\underset{x\rightarrow 4}{lim}\frac{x+1}{3x - 2}\);b) \(\underset{x \rightarrow +\infty }{lim}\frac{2-5x^{2}}{x^{2}+3}
- Giải câu 13 bài Ôn tập chương 5: Đạo hàm Câu 13: trang 177 sgk toán Đại số và giải tích 11Cho \(f(x) = {{{x^3}} \over 3} + {{{x^2}} \over 2} + x\)Tập nghiệm của bất phương trình \(f’(x) ≤ 0\)A. \(Ø\)B. \((0, +∞)\)C. \([-2, 2]\)D. \((-∞, +∞)\)
- Giải câu 2 bài 2: Giới hạn của hàm số Câu 2: trang 132 sgk toán Đại số và giải tích 11Cho hàm số\(f(x) = \left\{ \matrix{\sqrt x + 1 \text{ nếu }x\ge 0 \hfill \cr 2x\text{ nếu }x < 0 \hfill \cr} \right.\)Và các dãy số \((u_n)\) với
- Giải câu 3 bài 2: Quy tắc tính đạo hàm Câu 3: trang 163 sgk toán Đại số và giải tích 11Tìm đạo hàm của các hàm số sau:a) \(y = {({x^{7}} - 5{x^2})^3}\);b)\(y = ({x^2} + 1)(5 - 3{x^2})\);c) \(y = \frac{2x}{x^{2}-1}\);d) \(y = \frac{3-5x}{x^{2}-x+
- Giải câu 3 bài Ôn tập chương 5: Đạo hàm Câu 3: trang 176 sgk toán Đại số và giải tích 11Cho hàm số \(f(x) = \sqrt {1 + x} \)Tính \(f(3)+(x-3)f’(3)\)
- Giải câu 6 bài Ôn tập chương 5: Đạo hàm Câu 6: trang 176 sgk toán Đại số và giải tích 11Cho \({f_1}\left( x \right) = {{\cos x} \over x};{f_2}\left( x \right) = x\sin x\)Tính \({{{f_1}'(1)} \over {{f_2}'(1)}}\)
- Giải câu 3 bài 2: Giới hạn của hàm số Câu 3: trang 132 sgk toán Đại số và giải tích 11Tính các giới hạn sau:a) \(\underset{x\rightarrow -3}{lim}\) \(\frac{x^{2 }-1}{x+1}\);b) \(\underset{x\rightarrow -2}{lim}\) \(\frac{4-x^{2}}{x + 2}\);c)&n
- Giải câu 7 bài 2: Giới hạn của hàm số Câu 7: trang 133 sgk toán Đại số và giải tích 11Một thấu kính hội tụ có tiêu cự là \(f\). Gọi \(d\) và \(d'\) lần lượt là khoảng cách từ một vật thật \(AB\) và từ ảnh \(A'B'\) của nó tớ
- Giải câu 5 bài 2: Quy tắc tính đạo hàm Câu 5: trang 163 sgk toán Đại số và giải tích 11Cho \(y = x^3-3x^2+ 2\).Tìm \(x\) để :a) \(y' > 0\)b) \(y' < 3\)
- Giải câu 1 bài Ôn tập chương 5: Đạo hàm Câu 1: trang 176 sgk toán Đại số và giải tích 11Tính đạo hàm của các hàm số saua) \(y = {{{x^3}} \over 3} - {{{x^2}} \over 2} + x - 5\)b) \(y = {2 \over x} - {4 \over {{x^2}}} + {5 \over {{x^3}}} - {6 \over {7{x^4}}}\)
- Giải câu 2 bài Ôn tập chương 5: Đạo hàm Câu 2: trang 176 sgk toán Đại số và giải tích 11Tính đạo hàm của các hàm số saua) \(y = 2\sqrt x {\mathop{\rm sinx}\nolimits} - {{\cos x} \over x}\)b) \(y = {{3\cos x} \over {2x + 1}}\)c) \(y = {{{t^2} + 2\cot t}
- Giải câu 10 bài Ôn tập chương 5: Đạo hàm Câu 10: trang 177 sgk toán Đại số và giải tích 11Với \(g(x) = {{{x^2} - 2x + 5} \over {x - 1}}\); \(g’(2)\) bằng:A. \(1\)B. \(-3\)C. \(-5\)D. \(0\)
- Giải câu 12 bài Ôn tập chương 5: Đạo hàm Câu 12: trang 177 sgk toán Đại số và giải tích 11Giả sử \(h(x) = 5 (x + 1)^3+ 4(x + 1)\)Tập nghiệm của phương trình \(h’’(x) = 0\) là:A. \([-1, 2]\)B. \((-∞, 0]\)C. \({\rm{\{ }} - 1\} \)D. \(Ø\)
- Giải câu 4 bài 2: Giới hạn của hàm số Câu 4: trang 132 sgk toán Đại số và giải tích 11Tính các giới hạn sau:a) \(\underset{x\rightarrow 2}{lim}\) \(\frac{3x -5}{(x-2)^{2}}\);b) \(\underset{x\rightarrow 1^{-}}{lim}\) \(\frac{2x -7}{x-1}\);c)&
- Giải câu 4 bài Ôn tập chương 5: Đạo hàm Câu 4: trang 176 sgk toán Đại số và giải tích 11Cho hai hàm số \(f(x) = \tan x,\,(g(x) = {1 \over {1 - x}}\) .Tính \({{f'(0)} \over {g'(0)}}\)
- Giải câu 5 bài Ôn tập chương 5: Đạo hàm Câu 5: trang 176 sgk toán Đại số và giải tích 11Giải phương trình \(f’(x) = 0\),biết rằng:\(f(x) = 3x + {{60} \over x} -{ 64\over{x^{ 3}}} + 5\)
- Giải câu 7 bài Ôn tập chương 5: Đạo hàm Câu 7: trang 176 sgk toán Đại số và giải tích 11Viết phương trình tiếp tuyến:a) Của hypebol \(y = {{x + 1} \over {x - 1}}\)tại \(A (2, 3)\)b) Của đường cong \(y = x^3+ 4x^2– 1\) tại điểm có hoành
- Giải câu 11 bài Ôn tập chương 5: Đạo hàm Câu 11: trang 177 sgk toán Đại số và giải tích 11Nếu \(f(x) = sin^3 x+ x^2\) thì \(f''({{ - \pi } \over 2})\) bằng:A. \(0\)B. \(1\)C. \(-2\)D. \(5\)
- Giải câu 6 bài 2: Giới hạn của hàm số Câu 6: trang 133 sgk toán Đại số và giải tích 11Tính:\(\eqalign{& a)\mathop {\lim }\limits_{x \to + \infty } ({x^4} - {x^2} + x - 1) \cr & b)\mathop {\lim }\limits_{x \to - \infty } ( - 2{x^3} + 3{x^2} - 5) \cr 
- Giải câu 1 bài 2: Quy tắc tính đạo hàm Câu 1: trang 162 sgk toán Đại số và giải tích 11Bằng định nghĩa, tìm đạo hàm của các hàm số sau:a) \(y = 7 + x - x^2\) tại \(x_0 = 1\);b) \(y = x^3- 2x + 1\) tại \(x_0= 2\).
- Giải câu 2 bài 2: Quy tắc tính đạo hàm Câu 2: trang 163 sgk toán Đại số và giải tích 11Tìm đạo hàm của các hàm số sau:a) \(y = x^5- 4 x^3+ 2x - 3\);b) \(y = \frac{1}{4} - \frac{1}{3}x + x^2 - 0,5x^4\);c) \(y = \frac{x^{4}}{2}\)&
- Giải câu 4 bài 2: Quy tắc tính đạo hàm Câu 4: trang 163 sgk toán Đại số và giải tích 11Tìm đạo hàm của các hàm số sau:a) \(y = x^2 - x\sqrt x + 1\);b) \(y = \sqrt {(2 - 5x - x^2)}\);c) \(y = \frac{x^{3}}{\sqrt{a^{2}-x^{2}}}\) ( \(