photos image 092013 12 xuong so
- a) So sánh lực kéo trong 2 trường hợp. C.HOẠT ĐỘNG LUYỆN TẬPTrả lời câu hỏi và làm bài tập sau1.Kéo đều hai thùng hàng giống nhau, mỗi thùng nặng 500 N lên sàn ô tô cách mặt đất 1 m bằng tấm ván dày đặ
- 2.Giải thích bằng cơ sở tế bào học 2.Giải thích bằng cơ sở tế bào học
- Số A-vô-ga-đrô cho biết điều gì? B. Hoạt động hình thành kiến thức I. Số mol và khối lượng mol1. MolSố A-vô-ga-đrô ( SGK KHTN 7 trang 33)Bài tập: 1. Số A-vô-ga-đrô cho biết điều gì ?
- Hãy nêu một số ứng dụng khác của CO2 c) Ứng dụngHãy nêu một số ứng dụng khác của $CO_2$
- Hãy tìm một số phương ngữ mà em biết. d) Hãy tìm một số phương ngữ mà em biết.
- Vẽ sơ đồ bộ máy nhà nước thời Tần? HƯỚNG DẪN TRẢ LỜI CÂU HỎI GIỮA BÀI HỌCCâu 1: Vẽ sơ đồ bộ máy nhà nước thời Tần?
- Giải câu 2 bài 3: Hàm số bậc hai Câu 2: Trang 49 - sgk đại số 10Lập bảng biến thiên và vẽ đồ thị của các hàm số:a) $y = 3x^{2}- 4x + 1$ b) $y = -3x^{2} + 2x - 1$c) $y = 4x^{2} - 4x + 1 $ d)
- Giải câu 6 bài 1: Hàm số lượng giác Bài 6: Trang 17 sgk - đại số và giải tích 11Dựa vào đồ thị hàm số y = sinx, tìm các khoảng giá trị của x để hàm số đó nhận giá trị dương.
- Giải câu 1 bài 3: Hàm số liên tục Câu 1: trang 140 sgk toán Đại số và giải tích 11Dùng định nghĩa xét tính liên tục của hàm số $f(x)=x^3+2x-1$tại $x_0=3$
- Giải câu 3 bài 3: Hàm số bậc hai Câu 3: Trang 49 - sgk đại số 10Xác định parabol $y = ax^{2} + bx + 2$, biết rằng parabol đó:a) Đi qua hai điểm M(1; 5) và N(-2; 8)b) Đi qua hai điểm A(3; -4) và có trục đối xứng là $x = \frac{-3}{2}$c
- Sinh trưởng sơ cấp ở thực vật là gì? Câu 2: Trang 138 - sgk Sinh học 11Sinh trưởng sơ cấp ở thực vật là gì?
- Giải câu 8 bài 1: Hàm số lượng giác Bài 8: Trang 18 sgk - đại số và giải tích 11Tìm giá trị lớn nhất của hàm số:a) $y=2 \sqrt{\cos x}+1$;b) $y=3-2 \sin x$.
- Giải câu 4 bài 3: Hàm số liên tục Câu 4: trang 141 sgk toán Đại số và giải tích 11Cho hàm số \(f(x) = \frac{x +1}{x^{2}+x-6}\) và \(g(x) = tanx + sin x\).Với mỗi hàm số, hãy xác định các khoảng trên đó hàm số liên tục.
- Giải câu 5 bài 1: Hàm số lượng giác Bài 5: Trang 17 sgk - đại số và giải tích 11Dựa vào đồ thị hàm số y = cosx, tìm các giá trị của x để $ \cos x = \frac{1}{2}$.
- Giải câu 7 bài 1: Hàm số lượng giác Bài 7: Trang 18 sgk - đại số và giải tích 11Dựa vào đồ thị hàm số $y=\cos x$, tìm khoảng giá trị của x để hàm số đó nhận giá trị âm.
- Giải câu 6 bài 3: Hàm số liên tục Câu 6: trang 141 sgk toán Đại số và giải tích 11Chứng minh rằng phương trình:a) \(2x^3- 6x + 1 = 0\) có ít nhất hai nghiệm;b) \(cosx = x\) có nghiệm.
- Giải câu 1 bài 4: Các tập hợp số Câu 1: Trang 18 - sgk đại số 10Xác định các tập hợp sau:a) $[-3;1) ∪ (0;4]$b) $(0; 2] ∪ [-1;1)$c) $(-2; 15) ∪ (3; +∞)$d) $(-1; \frac{4}{3}) ∪ [-1; 2) $e) $(-∞; 1) ∪ (-2; +∞).$
- Giải câu 3 bài 4: Các tập hợp số Câu 3: Trang 18 - sgk đại số 10Xác định các tập hợp sau:a) $(-2; 3) \ (1; 5)$ b) $(-2; 3) \ [1; 5)$c) $R \ (2; +∞)$ d) $R \ (-∞; 3]$
- Giải câu 1 bài 3: Hàm số bậc hai Câu 1: Trang 49 - sgk đại số 10Xác định tọa độ của đỉnh và các giao điểm với trục tung, trục hoành (nếu có) của một parabol:a) $y = x^{2} - 3x + 2$ b) $y = -2x^{2}
- Giải câu 4 bài 3: Hàm số bậc hai Câu 4: Trang 49 - sgk đại số 10Xác định a, b, c biết parabol $y = ax^{2} + bx + c$ đi qua điểm A(8 ; 0) và có đỉnh là I(6 ; -12).
- Giải câu 2 bài 3: Hàm số liên tục Câu 2: trang 141 sgk toán Đại số và giải tích 11a. Xét tính liên tục của hàm số \(y = g(x)\) tại \(x_0= 2\), biết \(g(x) = \left\{\begin{matrix} \frac{x^{3}-8}{x- 2}; &x\neq 2 \\ 5;& x=2 \end{matri
- Giải câu 3 bài 3: Hàm số liên tục Câu 3: trang 141 sgk toán Đại số và giải tích 11Cho hàm số \(f(x) = \left\{\begin{matrix} 3x + 2; & x<-1\\ x^{2}-1 & x \geq -1 \end{matrix}\right.\)a) Vẽ đồ thị của hàm số \(y = f(x)\). Từ đó nêu nh
- Giải câu 5 bài 3: Hàm số liên tục Câu 5: trang 141 sgk toán Đại số và giải tích 11Ý kiến sau đúng hay sai ?"Nếu hàm số \(y = f(x)\) liên tục tại điểm \(x_0\) còn hàm số \(y = g(x)\) không liên tục tại \(x_0\) thì \(y = f(x)
- Giải câu 2 bài 4: Các tập hợp số Câu 2: Trang 18 - sgk đại số 10Xác định các tập hợp sau:a) $(-12; 3] ∩ [-1; 4] $ b) $(4; 7) ∩ (-7; -4)$c) $(2; 3) ∩ [3; 5)$ d) $(-∞; 2] ∩ [-2; +∞)$