photos image 122013 20 xac uop trong ham mo1
- Trắc nghiệm đại số và giải tích 12 chương 1:Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số Bài có đáp án. Bộ bài tập trắc nghiệm chương 1:Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số. Học sinh luyện tập bằng cách chọn đáp án của mình trong từng câu hỏi. Dưới cùng của bài trắc nghiệm, có phần xem kết quả để biết bài làm của mình. Kéo xuống dưới để bắt đầu. Xếp hạng: 3
- Giải câu 4 bài 1: Hàm số lượng giác Bài 4: Trang 17 sgk - đại số và giải tích 11Chứng minh rằng sin2(x + kπ) = sin 2x với mọi số nguyên k. Từ đó vẽ đồ thị hàm số y = sin2x. Xếp hạng: 3
- Giải câu 6 bài 1: Hàm số lượng giác Bài 6: Trang 17 sgk - đại số và giải tích 11Dựa vào đồ thị hàm số y = sinx, tìm các khoảng giá trị của x để hàm số đó nhận giá trị dương. Xếp hạng: 3
- Hàm ý của câu in đậm dưới đâu là gì? Vì sao em bé không nói thẳng mà phải sử dụng hàm ý Câu 2: trang 92 sgk Ngữ văn 9 tập 2Hàm ý của câu in đậm dưới đâu là gì? Vì sao em bé không nói thẳng mà phải sử dụng hàm ý? Việc sử dụng hàm ý có thành công hay không? Vì sao?Nó nhìn dáo d Xếp hạng: 3
- Tìm hàm nghĩa của cụm từ ta với ta Luyện tập (Trang 104 - SGK Ngữ văn 7) Tìm hàm nghĩa của cụm từ ta với ta. Xếp hạng: 3
- Giải câu 1 bài 3: Hàm số liên tục Câu 1: trang 140 sgk toán Đại số và giải tích 11Dùng định nghĩa xét tính liên tục của hàm số $f(x)=x^3+2x-1$tại $x_0=3$ Xếp hạng: 3
- Giải câu 2 bài 1: Hàm số lượng giác Bài 2: Trang 17 sgk - đại số và giải tích 11Tìm tập xác định của hàm sốa) $y=\frac{1+\cos x}{\sin x}$.b) $y=\sqrt{\frac{1+\cos x}{1-\cos x}}$.c) $y=\tan(x-\frac{\pi}{3})$.d) $y=\cot(x+\frac{\pi}{6})$. Xếp hạng: 3
- Giải câu 3 bài 1: Hàm số lượng giác Bài 3: Trang 17 sgk - đại số và giải tích 11Dựa vào đồ thị hàm số y = sinx, hãy vẽ đồ thị của hàm số y = |sinx| Xếp hạng: 3
- Giải câu 4 bài 3: Hàm số liên tục Câu 4: trang 141 sgk toán Đại số và giải tích 11Cho hàm số \(f(x) = \frac{x +1}{x^{2}+x-6}\) và \(g(x) = tanx + sin x\).Với mỗi hàm số, hãy xác định các khoảng trên đó hàm số liên tục. Xếp hạng: 3
- Giải câu 5 bài 1: Hàm số lượng giác Bài 5: Trang 17 sgk - đại số và giải tích 11Dựa vào đồ thị hàm số y = cosx, tìm các giá trị của x để $ \cos x = \frac{1}{2}$. Xếp hạng: 3
- Giải câu 7 bài 1: Hàm số lượng giác Bài 7: Trang 18 sgk - đại số và giải tích 11Dựa vào đồ thị hàm số $y=\cos x$, tìm khoảng giá trị của x để hàm số đó nhận giá trị âm. Xếp hạng: 3
- Giải câu 8 bài 1: Hàm số lượng giác Bài 8: Trang 18 sgk - đại số và giải tích 11Tìm giá trị lớn nhất của hàm số:a) $y=2 \sqrt{\cos x}+1$;b) $y=3-2 \sin x$. Xếp hạng: 3
- Giải câu 1 bài 5: Đạo hàm cấp hai Câu 1: trang 174 sgk toán Đại số và giải tích 11a) Cho \(f(x) = (x + 10)^6\).Tính \(f"(2)\).b) Cho \(f(x) = \sin 3x\).Tính \(f" \left ( -\frac{\pi }{2} \right )\) , \(f"(0)\), \(f" \left ( \frac{\pi }{18} \right )\). Xếp hạng: 3
- Giải câu 2 bài 5: Đạo hàm cấp hai Câu 2: trang 174 sgk toán Đại số và giải tích 11Tìm đạo hàm cấp hai của các hàm số sau:a) \(y = \frac{1}{1-x}\)b) \(y = \frac{1}{\sqrt{1-x}}\)c) \(y = \tan x\)d) \(y = \cos^2x\) Xếp hạng: 3
- Giải câu 1 bài 3: Hàm số bậc hai Câu 1: Trang 49 - sgk đại số 10Xác định tọa độ của đỉnh và các giao điểm với trục tung, trục hoành (nếu có) của một parabol:a) $y = x^{2} - 3x + 2$ b) $y = -2x^{2} Xếp hạng: 3
- Giải câu 2 bài 3: Hàm số liên tục Câu 2: trang 141 sgk toán Đại số và giải tích 11a. Xét tính liên tục của hàm số \(y = g(x)\) tại \(x_0= 2\), biết \(g(x) = \left\{\begin{matrix} \frac{x^{3}-8}{x- 2}; &x\neq 2 \\ 5;& x=2 \end{matri Xếp hạng: 3
- Giải câu 3 bài 3: Hàm số liên tục Câu 3: trang 141 sgk toán Đại số và giải tích 11Cho hàm số \(f(x) = \left\{\begin{matrix} 3x + 2; & x<-1\\ x^{2}-1 & x \geq -1 \end{matrix}\right.\)a) Vẽ đồ thị của hàm số \(y = f(x)\). Từ đó nêu nh Xếp hạng: 3
- Giải câu 5 bài 3: Hàm số liên tục Câu 5: trang 141 sgk toán Đại số và giải tích 11Ý kiến sau đúng hay sai ?"Nếu hàm số \(y = f(x)\) liên tục tại điểm \(x_0\) còn hàm số \(y = g(x)\) không liên tục tại \(x_0\) thì \(y = f(x) Xếp hạng: 3
- Giải câu 6 bài 3: Hàm số liên tục Câu 6: trang 141 sgk toán Đại số và giải tích 11Chứng minh rằng phương trình:a) \(2x^3- 6x + 1 = 0\) có ít nhất hai nghiệm;b) \(cosx = x\) có nghiệm. Xếp hạng: 3