khampha vu tru 44861 Quy du Apophis se cham mat Trai dat nam 2068
- Khi bị vết thương chảy máu, em sẽ làm gì? Câu 2: Em đã bao giờ bị đứt tay hay một vết thương nào gây chảy máu hay chưa? Vết thương đó lớn hay nhỏ, chảy máu nhiều hay ít? Và lúc đó em đã tự xử lí hay được xử lí như thế Xếp hạng: 3
- Giải câu 3 bài 4: Hai mặt phẳng song song Câu 3: Trang 71 - SGK hình học 11Cho hình hộp ABCD.A’B’C’D’.a) chứng minh rằng hai mặt phẳng (BDA’) và (B’D’C) song song với nhau.b) Chứng minh rằng đường chéo AC’ đi qua trọng tâm G1 và Xếp hạng: 3
- Giải câu 1 bài 4: Hai mặt phẳng song song Câu 1: Trang 71 - SGK hình học 11Trong mặt phẳng (α) cho hình bình hành ABCD. Qua A, B, C, D lần lượt vẽ bốn đường thẳng a, b, c, d song song với nhau và không nằm trên (α). Trên a, b và c lần lượt Xếp hạng: 3
- Giải câu 2 bài 4: Hai mặt phẳng song song Câu 2: Trang 71 - SGK hình học 11Cho hình lăng trụ tam giác ABC.A’B’C’. Gọi M và M’ lần lượt là trung điểm của các cạnh BC và B’C’.a) Chứng minh rằng AM song song với A’M’.b) Tìm giao điể Xếp hạng: 3
- Giải Câu 4 Bài 4: Hai mặt phẳng vuông góc Câu 4: Trang 114 - SGK Hình học 11Cho hai mặt phẳng \((\alpha)\), \((\beta)\) cắt nhau và một điểm \(M\) không thuộc \((\alpha)\) và không thuộc \((\beta)\). Chứng minh rằng qua điểm \(M\) có một và chỉ m Xếp hạng: 3
- Giải Câu 10 Bài 4: Hai mặt phẳng vuông góc Câu 10: Trang 114 - SGK Hình học 11Cho hình chóp tứ giác đều \(S.ABCD\) có các cạnh bên và cạnh đáy đều bằng \(a\). Gọi \(O\) là tâm của hình vuông \( ABCD\).a) Tính độ dài đoạn thẳng \(SO\).b) G Xếp hạng: 3
- Dạng 4: Vị trí tương đối của hai mặt phẳng Dạng 4: Vị trí tương đối của hai mặt phẳng Xếp hạng: 3
- Giải Câu 3 Bài 4: Hai mặt phẳng vuông góc Câu 3; Trang 113 - SGK Hình học 11Trong mặt phẳng \((\alpha)\) cho tam giác \(ABC\) vuông ở \(B\). Một đoạn thẳng \(AD\) vuông góc với \((\alpha)\) tại \(A\). Chứng minh rằng:a) \(\widehat {ABD}\) là góc giữ Xếp hạng: 3
- Giải câu 10 bài: Khái niệm về mặt tròn xoay Câu 10: Trang 40 - sgk hình học 12Cho hình trụ có bán kính r và có chiều cao cũng bằng r. Hình vuông ABCD có hai cạnh AB và CD lần lượt là các dây cung của hai đường tròn đáy, còn cạnh BC và AD kh Xếp hạng: 3
- Giải câu 9 bài: Khái niệm về mặt tròn xoay Câu 9: Trang 40 - sgk hình học 12Cắt hình nón đỉnh S bởi mặt phẳng đi qua trục ta được một tam giác vuông cân có cạnh huyền bằng $a\sqrt{2}$a) Tính diện tích xung quanh, diện tích đáy và thể t Xếp hạng: 3
- Giải Câu 1 Bài 4: Hai mặt phẳng vuông góc Câu 1: Trang 113 - SGK Hình học 11Cho ba mặt phẳng $(\alpha ),(\beta ),(\gamma )$ những mệnh đề nào sau đây đúng?a) Nếu (α) ⊥ (β) và (α) // () thì (β) ⊥ $(\gamma )$b) Nếu (α) ⊥ (β) và (α) ⊥ $(\gamma Xếp hạng: 3
- Giải Câu 6 Bài 4: Hai mặt phẳng vuông góc Câu 6: Trang 114 - SGK Hình học 11Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là một hình thoi cạnh \(a\) và có \(SA = SB = SC = a\). Chứng minh rằng:a) Mặt phẳng \((ABCD)\) vuông góc với mặt phẳng \((SBD)\);b) Xếp hạng: 3
- Giải Câu 7 Bài 4: Hai mặt phẳng vuông góc Câu 7: Trang 114 - SGK Hình học 11Cho hình hộp chữ nhật \(ABCD.A'B'C'D'\) có \(AB = a, BC = b, CC' = c\).a) Chứng minh rằng mặt phẳng \((ADC'B')\) vuông góc với mặt phẳng \((ABB'A')\).b) Tính độ dài đườn Xếp hạng: 3
- Giải Câu 11 Bài 4: Hai mặt phẳng vuông góc Câu 11: Trang 114 - SGK Hình học 11Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là một hình thoi tâm \(I\) cạnh \(a\) và có góc \(A\) bằng \(60^{0},\) cạnh \(SC=\frac{a\sqrt{6}}{2}\) và \(SC\) vuông Xếp hạng: 3
- Mặt phẳng nghiêng được sử dụng nhằm mục đích gì? 3. Rút ra kết luận nghiên cứu Hãy trả lời những câu hỏi sau đây:- Mặt phẳng nghiêng được sử dụng nhằm mục đích gì? Xếp hạng: 3
- Giải Câu 5 Bài 4: Hai mặt phẳng vuông góc Câu 5: Trang 114 - SGK Hình học 11Cho hình lập phương \(ABCD.A'B'C'D'\). Chứng minh rằng:a) Mặt phẳng \((AB'C'D)\) vuông góc với mặt phẳng \((BCD'A')\);b) Đường thẳng \(AC'\) vuông góc với mặt phẳng \( Xếp hạng: 3
- Giải Câu 8 Bài 4: Hai mặt phẳng vuông góc Câu 8: Trang 114 - SGK Hình học 11Tính độ dài đường chéo của một hình lập phương cạnh \(a\). Xếp hạng: 3
- Giải Câu 9 Bài 4: Hai mặt phẳng vuông góc Câu 9: Trang 114 - SGK Hình học 11Cho hình chóp tam giác đều \(S.ABC \) có \(SH\) là đường cao. Chứng minh \(SA ⊥ BC\) và \(SB ⊥ AC\) Xếp hạng: 3
- Giải câu 8 bài: Khái niệm về mặt tròn xoay Câu 8: Trang 40 - sgk hình học 12Một hình trụ có hai đáy là hai hình tròn (O; r) và (O';r). Khoảng cách giữa hai đáy là OO' = r . Một hình nón có đỉnh là O' và có đáy là hình tròn (O;r).a) Gọi $S_{1 Xếp hạng: 3