cau chuyen
- Giải câu 10 bài ôn tập chương 4: Giới hạn Câu 10: trang 143 sgk toán Đại số và giải tích 11Cho dãy số \((u_n)\) với \({u_n} = {{1 + 2 + 3 + ... + n} \over {{n^2} + 1}}\)Mệnh đề nào sau đây là đúng?A. \(\lim u_n= 0\)B. \({{\mathop{\rm limu}\nolimits} _n} =
- Giải câu 5 bài ôn tập chương 4: Giới hạn Câu 5: trang 142 sgk toán Đại số và giải tích 11Tính các giới hạn saua. \(\mathop {\lim }\limits_{x \to 2} {{x + 3} \over {{x^2} + x + 4}}\)b. \(\mathop {\lim }\limits_{x \to - 3} {{{x^2} + 5x + 6} \over {{x^2} + 3x}}
- Giải câu 1 bài Ôn tập chương 5: Đạo hàm Câu 1: trang 176 sgk toán Đại số và giải tích 11Tính đạo hàm của các hàm số saua) \(y = {{{x^3}} \over 3} - {{{x^2}} \over 2} + x - 5\)b) \(y = {2 \over x} - {4 \over {{x^2}}} + {5 \over {{x^3}}} - {6 \over {7{x^4}}}\)
- Giải câu 13 bài ôn tập chương 4: Giới hạn Câu 13: trang 144 sgk toán Đại số và giải tích 11Chọn đáp án đúng:Cho hàm số: \(f(x) = {{1 - {x^2}} \over x}\) bằng:A. \(+∞\)B. \(1\)C. \(-∞\)D. \(-1\)
- Giải câu 5 bài 2: Quy tắc tính đạo hàm Câu 5: trang 163 sgk toán Đại số và giải tích 11Cho \(y = x^3-3x^2+ 2\).Tìm \(x\) để :a) \(y' > 0\)b) \(y' < 3\)
- Giải Câu 6 Bài 4: Hai mặt phẳng vuông góc Câu 6: Trang 114 - SGK Hình học 11Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là một hình thoi cạnh \(a\) và có \(SA = SB = SC = a\). Chứng minh rằng:a) Mặt phẳng \((ABCD)\) vuông góc với mặt phẳng \((SBD)\);b)
- Giải Câu 7 Bài 4: Hai mặt phẳng vuông góc Câu 7: Trang 114 - SGK Hình học 11Cho hình hộp chữ nhật \(ABCD.A'B'C'D'\) có \(AB = a, BC = b, CC' = c\).a) Chứng minh rằng mặt phẳng \((ADC'B')\) vuông góc với mặt phẳng \((ABB'A')\).b) Tính độ dài đườn
- Giải câu 8 bài ôn tập chương 4: Giới hạn Câu 8: trang 143 sgk toán Đại số và giải tích 11Chứng minh rằng phương trình \(x^5– 3x^4+ 5x – 2 = 0\) có ít nhất ba nghiệm nằm trong khoảng \((-2, 5)\)
- Giải câu 9 bài ôn tập chương 4: Giới hạn Câu 9: trang 143 sgk toán Đại số và giải tích 11Mệnh đề nào sau đây là mệnh đề đúng?A. Một dãy số có giới hạn thì luôn luôn tăng hoặc luôn luôn giảmB. Nếu \((u_n)\) là dãy số tăng thì \
- Giải câu 11 bài ôn tập chương 4: Giới hạn Câu 11: trang 143 sgk toán Đại số và giải tích 11Cho dãy số \((u_n)\) với : \(u_n = \sqrt 2 + (\sqrt2)^2+......+( \sqrt 2)^n\)Chọn mệnh đề đúng trong các mệnh đề sau:A. \(\lim {u_n} = \sqrt 2 + {(\s
- Giải câu 12 bài ôn tập chương 4: Giới hạn Câu 12: trang 144 sgk toán Đại số và giải tích 11Chọn đáp án đúng\(\mathop {\lim }\limits_{x \to {1^ - }} {{ - 3x - 1} \over {x - 1}}\) bằng:A. \(-1\) B. \(-∞\)C. \(-3\)D. \(+∞\)
- Giải câu 1 bài 2: Quy tắc tính đạo hàm Câu 1: trang 162 sgk toán Đại số và giải tích 11Bằng định nghĩa, tìm đạo hàm của các hàm số sau:a) \(y = 7 + x - x^2\) tại \(x_0 = 1\);b) \(y = x^3- 2x + 1\) tại \(x_0= 2\).
- Giải câu 3 bài 2: Quy tắc tính đạo hàm Câu 3: trang 163 sgk toán Đại số và giải tích 11Tìm đạo hàm của các hàm số sau:a) \(y = {({x^{7}} - 5{x^2})^3}\);b)\(y = ({x^2} + 1)(5 - 3{x^2})\);c) \(y = \frac{2x}{x^{2}-1}\);d) \(y = \frac{3-5x}{x^{2}-x+
- Giải câu 2 bài Ôn tập chương 5: Đạo hàm Câu 2: trang 176 sgk toán Đại số và giải tích 11Tính đạo hàm của các hàm số saua) \(y = 2\sqrt x {\mathop{\rm sinx}\nolimits} - {{\cos x} \over x}\)b) \(y = {{3\cos x} \over {2x + 1}}\)c) \(y = {{{t^2} + 2\cot t}
- Giải câu 3 bài Ôn tập chương 5: Đạo hàm Câu 3: trang 176 sgk toán Đại số và giải tích 11Cho hàm số \(f(x) = \sqrt {1 + x} \)Tính \(f(3)+(x-3)f’(3)\)
- Giải câu 6 bài ôn tập chương 4: Giới hạn Câu 6: trang 142 sgk toán Đại số và giải tích 11Cho hai hàm số \(f(x) = {{1 - {x^2}} \over {{x^2}}}\) và \(g(x) = {{{x^3} + {x^2} + 1} \over {{x^2}}}\)a) Tính \(\mathop {\lim }\limits_{x \to 0} f(x);\mathop {\lim }\limits_{x
- Giải câu 4 bài 2: Quy tắc tính đạo hàm Câu 4: trang 163 sgk toán Đại số và giải tích 11Tìm đạo hàm của các hàm số sau:a) \(y = x^2 - x\sqrt x + 1\);b) \(y = \sqrt {(2 - 5x - x^2)}\);c) \(y = \frac{x^{3}}{\sqrt{a^{2}-x^{2}}}\) ( \(
- Giải câu 5 bài Ôn tập chương 5: Đạo hàm Câu 5: trang 176 sgk toán Đại số và giải tích 11Giải phương trình \(f’(x) = 0\),biết rằng:\(f(x) = 3x + {{60} \over x} -{ 64\over{x^{ 3}}} + 5\)
- Giải Câu 8 Bài 4: Hai mặt phẳng vuông góc Câu 8: Trang 114 - SGK Hình học 11Tính độ dài đường chéo của một hình lập phương cạnh \(a\).
- Giải câu 7 bài ôn tập chương 4: Giới hạn Câu 7: trang 143 sgk toán Đại số và giải tích 11Xét tính liên tục trên R của hàm số:\(g(x) = \left\{ \matrix{{{{x^2} - x - 2} \over {x - 2}}(x > 2) \hfill \cr 5 - x(x \le 2) \hfill \cr} \right.\)
- Giải câu 14 bài ôn tập chương 4: Giới hạn Câu 14: trang 144 sgk toán Đại số và giải tích 11Chọn đáp án đúngCho hàm số: \(f(x) = \left\{ \matrix{{{3 - x} \over {\sqrt {x + 1} - 2}};\text{ nếu } x \ne 3 \hfill \cr m;\text{ nếu }x = 3 \hf
- Giải câu 4 bài Ôn tập chương 5: Đạo hàm Câu 4: trang 176 sgk toán Đại số và giải tích 11Cho hai hàm số \(f(x) = \tan x,\,(g(x) = {1 \over {1 - x}}\) .Tính \({{f'(0)} \over {g'(0)}}\)
- Giải câu 15 bài ôn tập chương 4: Giới hạn Câu 15: trang 144 sgk toán Đại số và giải tích 11Cho phương trình: \(-4x^3+ 4x – 1 = 0\)Mệnh đề sai là:A. Hàm số \(f(x) = -4x^3+ 4x – 1\) liên tục trên \(\mathbb R\)B. Phương trình (1) không có nghiệm t
- Giải câu 2 bài 2: Quy tắc tính đạo hàm Câu 2: trang 163 sgk toán Đại số và giải tích 11Tìm đạo hàm của các hàm số sau:a) \(y = x^5- 4 x^3+ 2x - 3\);b) \(y = \frac{1}{4} - \frac{1}{3}x + x^2 - 0,5x^4\);c) \(y = \frac{x^{4}}{2}\)&