photos image 2014 08 29 chien ham ghost3
- Giải VNEN toán đại 7 bài 5: Hàm số Giải bài 5: Hàm số - Sách hướng dẫn học toán 7 tập 1 trang 64. Sách này nằm trong bộ VNEN của chương trình mới. Dưới đây sẽ hướng dẫn trả lời và giải đáp các câu hỏi trong bài học. Cách làm chi tiết, dễ hiểu, Hi vọng các em học sinh nắm tốt kiến thức bài học.
- Trắc nghiệm Đại số 7 bài 5: Hàm số Bài có đáp án. Câu hỏi và bài tập trắc nghiệm bài 5: Hàm số Học sinh luyện tập bằng cách chọn đáp án của mình trong từng câu hỏi. Dưới cùng của bài trắc nghiệm, có phần xem kết quả để biết bài làm của mình. Kéo xuống dưới để bắt đầu.
- Trắc nghiệm đại số và giải tích 12 chương 1:Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số Bài có đáp án. Bộ bài tập trắc nghiệm chương 1:Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số. Học sinh luyện tập bằng cách chọn đáp án của mình trong từng câu hỏi. Dưới cùng của bài trắc nghiệm, có phần xem kết quả để biết bài làm của mình. Kéo xuống dưới để bắt đầu.
- Tìm số tiệm cận của đồ thị hàm số Phần tham khảo mở rộngDạng 1: Tìm số tiệm cận của đồ thị hàm số
- Trắc nghiệm đại số và giải tích 12 chương 1:Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số Bài có đáp án. Bộ bài tập trắc nghiệm chương 1:Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số. Học sinh luyện tập bằng cách chọn đáp án của mình trong từng câu hỏi. Dưới cùng của bài trắc nghiệm, có phần xem kết quả để biết bài làm của mình. Kéo xuống dưới để bắt đầu.
- Giải câu 4 bài 1: Hàm số lượng giác Bài 4: Trang 17 sgk - đại số và giải tích 11Chứng minh rằng sin2(x + kπ) = sin 2x với mọi số nguyên k. Từ đó vẽ đồ thị hàm số y = sin2x.
- Giải câu 6 bài 1: Hàm số lượng giác Bài 6: Trang 17 sgk - đại số và giải tích 11Dựa vào đồ thị hàm số y = sinx, tìm các khoảng giá trị của x để hàm số đó nhận giá trị dương.
- Hàm ý của câu in đậm dưới đâu là gì? Vì sao em bé không nói thẳng mà phải sử dụng hàm ý Câu 2: trang 92 sgk Ngữ văn 9 tập 2Hàm ý của câu in đậm dưới đâu là gì? Vì sao em bé không nói thẳng mà phải sử dụng hàm ý? Việc sử dụng hàm ý có thành công hay không? Vì sao?Nó nhìn dáo d
- Tìm hàm nghĩa của cụm từ ta với ta Luyện tập (Trang 104 - SGK Ngữ văn 7) Tìm hàm nghĩa của cụm từ ta với ta.
- Giải câu 1 bài 3: Hàm số liên tục Câu 1: trang 140 sgk toán Đại số và giải tích 11Dùng định nghĩa xét tính liên tục của hàm số $f(x)=x^3+2x-1$tại $x_0=3$
- Giải câu 2 bài 1: Hàm số lượng giác Bài 2: Trang 17 sgk - đại số và giải tích 11Tìm tập xác định của hàm sốa) $y=\frac{1+\cos x}{\sin x}$.b) $y=\sqrt{\frac{1+\cos x}{1-\cos x}}$.c) $y=\tan(x-\frac{\pi}{3})$.d) $y=\cot(x+\frac{\pi}{6})$.
- Giải câu 3 bài 1: Hàm số lượng giác Bài 3: Trang 17 sgk - đại số và giải tích 11Dựa vào đồ thị hàm số y = sinx, hãy vẽ đồ thị của hàm số y = |sinx|
- Giải câu 4 bài 3: Hàm số liên tục Câu 4: trang 141 sgk toán Đại số và giải tích 11Cho hàm số \(f(x) = \frac{x +1}{x^{2}+x-6}\) và \(g(x) = tanx + sin x\).Với mỗi hàm số, hãy xác định các khoảng trên đó hàm số liên tục.
- Giải câu 2 bài 3: Hàm số bậc hai Câu 2: Trang 49 - sgk đại số 10Lập bảng biến thiên và vẽ đồ thị của các hàm số:a) $y = 3x^{2}- 4x + 1$ b) $y = -3x^{2} + 2x - 1$c) $y = 4x^{2} - 4x + 1 $ d)
- Giải câu 5 bài 1: Hàm số lượng giác Bài 5: Trang 17 sgk - đại số và giải tích 11Dựa vào đồ thị hàm số y = cosx, tìm các giá trị của x để $ \cos x = \frac{1}{2}$.
- Giải câu 7 bài 1: Hàm số lượng giác Bài 7: Trang 18 sgk - đại số và giải tích 11Dựa vào đồ thị hàm số $y=\cos x$, tìm khoảng giá trị của x để hàm số đó nhận giá trị âm.
- Giải câu 8 bài 1: Hàm số lượng giác Bài 8: Trang 18 sgk - đại số và giải tích 11Tìm giá trị lớn nhất của hàm số:a) $y=2 \sqrt{\cos x}+1$;b) $y=3-2 \sin x$.
- Giải câu 1 bài 5: Đạo hàm cấp hai Câu 1: trang 174 sgk toán Đại số và giải tích 11a) Cho \(f(x) = (x + 10)^6\).Tính \(f"(2)\).b) Cho \(f(x) = \sin 3x\).Tính \(f" \left ( -\frac{\pi }{2} \right )\) , \(f"(0)\), \(f" \left ( \frac{\pi }{18} \right )\).
- Giải câu 2 bài 5: Đạo hàm cấp hai Câu 2: trang 174 sgk toán Đại số và giải tích 11Tìm đạo hàm cấp hai của các hàm số sau:a) \(y = \frac{1}{1-x}\)b) \(y = \frac{1}{\sqrt{1-x}}\)c) \(y = \tan x\)d) \(y = \cos^2x\)
- Giải câu 1 bài 3: Hàm số bậc hai Câu 1: Trang 49 - sgk đại số 10Xác định tọa độ của đỉnh và các giao điểm với trục tung, trục hoành (nếu có) của một parabol:a) $y = x^{2} - 3x + 2$ b) $y = -2x^{2}
- Giải câu 2 bài 3: Hàm số liên tục Câu 2: trang 141 sgk toán Đại số và giải tích 11a. Xét tính liên tục của hàm số \(y = g(x)\) tại \(x_0= 2\), biết \(g(x) = \left\{\begin{matrix} \frac{x^{3}-8}{x- 2}; &x\neq 2 \\ 5;& x=2 \end{matri
- Giải câu 3 bài 3: Hàm số liên tục Câu 3: trang 141 sgk toán Đại số và giải tích 11Cho hàm số \(f(x) = \left\{\begin{matrix} 3x + 2; & x<-1\\ x^{2}-1 & x \geq -1 \end{matrix}\right.\)a) Vẽ đồ thị của hàm số \(y = f(x)\). Từ đó nêu nh
- Giải câu 5 bài 3: Hàm số liên tục Câu 5: trang 141 sgk toán Đại số và giải tích 11Ý kiến sau đúng hay sai ?"Nếu hàm số \(y = f(x)\) liên tục tại điểm \(x_0\) còn hàm số \(y = g(x)\) không liên tục tại \(x_0\) thì \(y = f(x)
- Giải câu 6 bài 3: Hàm số liên tục Câu 6: trang 141 sgk toán Đại số và giải tích 11Chứng minh rằng phương trình:a) \(2x^3- 6x + 1 = 0\) có ít nhất hai nghiệm;b) \(cosx = x\) có nghiệm.