timkiem ảo giác mặt trăng
- [Cánh diều] Giải đạo đức 1 bài: Em tự giác làm việc của mình Hướng dẫn học bài: Em tự giác làm việc của mình trang 29 sgk Đạo đức 1. Đây là sách giáo khoa nằm trong bộ sách "Cánh Diều" được biên soạn theo chương trình đổi mới của Bộ giáo dục. Hi vọng, với cách hướng dẫn cụ thể và giải chi tiết các bé sẽ nắm bài học tốt hơn Xếp hạng: 3
- Trắc nghiệm hình học 9 bài 2: Tỉ số lượng giác của góc nhọn Bài có đáp án. Câu hỏi và bài tập trắc nghiệm bài 2: Tỉ số lượng giác của góc nhọn Học sinh luyện tập bằng cách chọn đáp án của mình trong từng câu hỏi. Dưới cùng của bài trắc nghiệm, có phần xem kết quả để biết bài làm của mình. Kéo xuống dưới để bắt đầu. Xếp hạng: 3
- Giải VNEN toán 7 bài 9: Tính chất ba đường cao của tam giác Giải bài 9: Tính chất ba đường cao của tam giác - Sách hướng dẫn học Toán 7 tập 2 trang 91. Sách này nằm trong bộ VNEN của chương trình mới. Dưới đây sẽ hướng dẫn trả lời và giải các bài tập trong bài học. Cách giải chi tiết, dễ hiểu. Hi vọng các em học sinh nắm tốt kiến thức. Xếp hạng: 3
- Trắc nghiệm Hình học 8 Bài 4: Khái niệm hai tam giác đồng dạng Bài có đáp án. Câu hỏi và bài tập trắc nghiệm Bài 4: Khái niệm hai tam giác đồng dạng Học sinh luyện tập bằng cách chọn đáp án của mình trong từng câu hỏi. Dưới cùng của bài trắc nghiệm, có phần xem kết quả để biết bài làm của mình. Kéo xuống dưới để bắt đầu. Xếp hạng: 3
- Trắc nghiệm đại số 10 bài 2: Giá trị lượng giác của một cung Câu hỏi và bài tập trắc nghiệm đại số 10 bài 2: Giá trị lượng giác của một cung (P2). Học sinh luyện tập bằng cách chọn đáp án của mình trong từng câu hỏi. Dưới cùng của bài trắc nghiệm, có phần xem kết quả để biết bài làm của mình. Kéo xuống dưới để bắt đầu nhé! Xếp hạng: 3
- Giải Câu 3 Bài 4: Hai mặt phẳng vuông góc Câu 3; Trang 113 - SGK Hình học 11Trong mặt phẳng \((\alpha)\) cho tam giác \(ABC\) vuông ở \(B\). Một đoạn thẳng \(AD\) vuông góc với \((\alpha)\) tại \(A\). Chứng minh rằng:a) \(\widehat {ABD}\) là góc giữ Xếp hạng: 3
- Giải câu 4 bài 1: Giá trị lượng giác của một góc bất kì Câu 4: Trang 40 - sgk hình học 10Chứng minh rằng với mọi góc $\alpha $ $(0^{\circ}\leq \alpha \leq 180^{\circ})$ ta đều có $\cos ^{2}\alpha +\sin ^{2}\alpha =1$. Xếp hạng: 3
- Giải câu 5 bài 1: Giá trị lượng giác của một góc bất kì Câu 5: Trang 40 - sgk hình học 10Cho góc x, với $\cos x=\frac{1}{3}$. Tính giá trị của biểu thức: $P = 3\sin ^{2}\alpha+\cos ^{2}\alpha$ Xếp hạng: 3
- Giải câu 3 bài 4: Hai mặt phẳng song song Câu 3: Trang 71 - SGK hình học 11Cho hình hộp ABCD.A’B’C’D’.a) chứng minh rằng hai mặt phẳng (BDA’) và (B’D’C) song song với nhau.b) Chứng minh rằng đường chéo AC’ đi qua trọng tâm G1 và Xếp hạng: 3
- Giải câu 6 bài 1: Giá trị lượng giác của một góc bất kì Câu 6: Trang 40 - sgk hình học 10Cho hình vuông ABCD. Tính:$\cos (\overrightarrow{AC},\overrightarrow{BA})$$\sin (\overrightarrow{AC},\overrightarrow{BD})$$\cos (\overrightarrow{AB},\overrightarrow{CD})$ Xếp hạng: 3
- Giải câu 1 bài 4: Hai mặt phẳng song song Câu 1: Trang 71 - SGK hình học 11Trong mặt phẳng (α) cho hình bình hành ABCD. Qua A, B, C, D lần lượt vẽ bốn đường thẳng a, b, c, d song song với nhau và không nằm trên (α). Trên a, b và c lần lượt Xếp hạng: 3
- Giải câu 2 bài 4: Hai mặt phẳng song song Câu 2: Trang 71 - SGK hình học 11Cho hình lăng trụ tam giác ABC.A’B’C’. Gọi M và M’ lần lượt là trung điểm của các cạnh BC và B’C’.a) Chứng minh rằng AM song song với A’M’.b) Tìm giao điể Xếp hạng: 3
- Giải Câu 1 Bài 4: Hai mặt phẳng vuông góc Câu 1: Trang 113 - SGK Hình học 11Cho ba mặt phẳng $(\alpha ),(\beta ),(\gamma )$ những mệnh đề nào sau đây đúng?a) Nếu (α) ⊥ (β) và (α) // () thì (β) ⊥ $(\gamma )$b) Nếu (α) ⊥ (β) và (α) ⊥ $(\gamma Xếp hạng: 3
- Giải câu 3 bài 1 : Giá trị lượng giác của một góc bất kì Câu 3: Trang 40 - sgk hình học 10Chứng minh rằng:a) $\sin 105^{\circ}=\sin 75^{\circ}$b) $\cos 170^{\circ}=-\cos 10^{\circ}$c) $\cos 122^{\circ}=-\cos 58^{\circ}$ Xếp hạng: 3
- Giải Câu 4 Bài 4: Hai mặt phẳng vuông góc Câu 4: Trang 114 - SGK Hình học 11Cho hai mặt phẳng \((\alpha)\), \((\beta)\) cắt nhau và một điểm \(M\) không thuộc \((\alpha)\) và không thuộc \((\beta)\). Chứng minh rằng qua điểm \(M\) có một và chỉ m Xếp hạng: 3
- Giải Câu 5 Bài 4: Hai mặt phẳng vuông góc Câu 5: Trang 114 - SGK Hình học 11Cho hình lập phương \(ABCD.A'B'C'D'\). Chứng minh rằng:a) Mặt phẳng \((AB'C'D)\) vuông góc với mặt phẳng \((BCD'A')\);b) Đường thẳng \(AC'\) vuông góc với mặt phẳng \( Xếp hạng: 3
- Giải Câu 6 Bài 4: Hai mặt phẳng vuông góc Câu 6: Trang 114 - SGK Hình học 11Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là một hình thoi cạnh \(a\) và có \(SA = SB = SC = a\). Chứng minh rằng:a) Mặt phẳng \((ABCD)\) vuông góc với mặt phẳng \((SBD)\);b) Xếp hạng: 3
- Giải Câu 7 Bài 4: Hai mặt phẳng vuông góc Câu 7: Trang 114 - SGK Hình học 11Cho hình hộp chữ nhật \(ABCD.A'B'C'D'\) có \(AB = a, BC = b, CC' = c\).a) Chứng minh rằng mặt phẳng \((ADC'B')\) vuông góc với mặt phẳng \((ABB'A')\).b) Tính độ dài đườn Xếp hạng: 3
- Giải Câu 8 Bài 4: Hai mặt phẳng vuông góc Câu 8: Trang 114 - SGK Hình học 11Tính độ dài đường chéo của một hình lập phương cạnh \(a\). Xếp hạng: 3