photos image 2014 08 29 chien ham ghost4
- Tính tộc độ tăng trưởng sản lượng thủy sản, số lượng đà bò và năng suất lúa vùng Bắc Trung Bộ giai đoạn 1995 - 2014. Vẽ biểu đồ C. Hoạt động luyện tập1. Dựa vào bảng 2, hãy:Tính tộc độ tăng trưởng sản lượng thủy sản, số lượng đà bò và năng suất lúa vùng Bắc Trung Bộ giai đoạn 1995 - 2014.Vẽ biểu đồ thể
- Chỉ ra những điểm giống và khác nhau giữa hai chiến lược "Chiến tranh cục bộ" và "chiến tranh đặc biệt" của Mĩ ở miền Nam Việt Nam? 3. Tìm hiểu chiến đấu của nhân dân miền Nam chống chiến lược "Chiên tranh cục bộ" của Mĩ (1965 - 1968)Đọc thông tin, kết hợp quan sát kênh hình, hãy:Chỉ ra những điểm giống và khác nhau gi
- Cho bảng số liệu sau: Tính tỉ trọng giá trị sản xuất công nghiệp của Tây Nguyên so với cả nước giai đoạn 2002 - 2014 và nhận xét 2. Cho bảng số liệu sau:Giá trị sản xuất công nghiệp của Tây Nguyên và cả nước giai đoạn 2002 - 2014Năm2002200520102014Tây Nguyên2,37,222,739,7Cả nước261,1988,52963,56004,5Tính tỉ trọng giá tr
- Nêu những thắng lợi chung của ba nước Việt Nam, Lào, Campuchia trên các mặt trận quận sự, chính trị, ngoại giao trong chiến đấu chống chiến lược “Việt Nam hóa chiến tranh” và “Đông Dương hóa chiến tranh” (1969 1973)? Câu 6: Trang 183 – sgk lịch sử 12Nêu những thắng lợi chung của ba nước Việt Nam, Lào, Campuchia trên các mặt trận quận sự, chính trị, ngoại giao trong chiến đấu chống chiến lược “Việt Nam
- Giải câu 2 bài 2: Cực trị của hàm số Bài 2: Trang 18 - sgk giải tích 12Áp dụng quy tắc II, hãy tìm các điểm cực trị của các hàm số saua) $y=x^{4}-2x^{2}+1$;b) $y=\sin 2x-x$;c) $y=\sin x +\cos x$;d) $y=x^{5}-x^{3}-2x+1$.
- Giải câu 4 bài 2: Cực trị của hàm số Bài 4: Trang 18 - sgk giải tích 12Chứng minh rằng với mọi giá trị của tham số m, hàm số $y=x^{3}-mx^{2}-2x+1$ luôn luôn có một điểm cực đại và một điểm cực tiểu.
- Giải câu 1 bài 2: Cực trị của hàm số Bài 1: Trang 18 - sgk giải tích 12Áp dụng Quy tắc I, hãy tìm các điểm cực trị của các hàm số saua) $y=2x^{3}+3x^{2}-36x-10$.b) $y=x^{4}+2x^{2}-3$.c) $y=x+\frac{1}{x}$.d) $y=x^{3}(1-x^{2})$.e) $y=\sqrt{x^{2}-x+1}$
- Giải câu 5 bài 2: Cực trị của hàm số Bài 5: Trang 18 - sgk giải tích 12Tìm a và b để các cực trị của hàm số $$y=\frac{5}{3}a^{2}x^{3}+2ax^{2}-9x+b$$ đều là những số dương và $x_{0}=-\frac{5}{9}$ là điểm cực đại.
- Giải câu 1 bài 2: Giới hạn của hàm số Câu 1: trang 132 sgk toán Đại số và giải tích 11Dùng định nghĩa tìm các giới hạn sau:a) \(\underset{x\rightarrow 4}{lim}\frac{x+1}{3x - 2}\);b) \(\underset{x \rightarrow +\infty }{lim}\frac{2-5x^{2}}{x^{2}+3}
- Trắc nghiệm đại số và giải tích 12 chương 1:Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số (P1) Bài có đáp án. Bộ bài tập trắc nghiệm chương 1:Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số. Học sinh luyện tập bằng cách chọn đáp án của mình trong từng câu hỏi. Dưới cùng của bài trắc nghiệm, có phần xem kết quả để biết bài làm của mình. Kéo xuống dưới để bắt đầu.
- Giải câu 6 bài 2: Cực trị của hàm số Bài 6: Trang 18 - sgk giải tích 12Xác định giá trị của tham số m để hàm số $y=\frac{x^{2}+mx+1}{x+m}$ đạt cực đại tại $x=2$.
- Giải câu 3 bài 2: Cực trị của hàm số Bài 3: Trang 18 - sgk giải tích 12Chứng minh rằng hàm số $y=\sqrt{|x|}$ không có đạo hàm tại x=0 nhưng vẫn đạt cực tiểu tại điểm đó.
- Giải câu 2 bài 2: Giới hạn của hàm số Câu 2: trang 132 sgk toán Đại số và giải tích 11Cho hàm số\(f(x) = \left\{ \matrix{\sqrt x + 1 \text{ nếu }x\ge 0 \hfill \cr 2x\text{ nếu }x < 0 \hfill \cr} \right.\)Và các dãy số \((u_n)\) với
- Giải câu 3 bài 2: Giới hạn của hàm số Câu 3: trang 132 sgk toán Đại số và giải tích 11Tính các giới hạn sau:a) \(\underset{x\rightarrow -3}{lim}\) \(\frac{x^{2 }-1}{x+1}\);b) \(\underset{x\rightarrow -2}{lim}\) \(\frac{4-x^{2}}{x + 2}\);c)&n
- Giải câu 7 bài 2: Giới hạn của hàm số Câu 7: trang 133 sgk toán Đại số và giải tích 11Một thấu kính hội tụ có tiêu cự là \(f\). Gọi \(d\) và \(d'\) lần lượt là khoảng cách từ một vật thật \(AB\) và từ ảnh \(A'B'\) của nó tớ
- Giải câu 5 bài 2: Quy tắc tính đạo hàm Câu 5: trang 163 sgk toán Đại số và giải tích 11Cho \(y = x^3-3x^2+ 2\).Tìm \(x\) để :a) \(y' > 0\)b) \(y' < 3\)
- Giải câu 1 bài Ôn tập chương 5: Đạo hàm Câu 1: trang 176 sgk toán Đại số và giải tích 11Tính đạo hàm của các hàm số saua) \(y = {{{x^3}} \over 3} - {{{x^2}} \over 2} + x - 5\)b) \(y = {2 \over x} - {4 \over {{x^2}}} + {5 \over {{x^3}}} - {6 \over {7{x^4}}}\)
- Giải câu 2 bài Ôn tập chương 5: Đạo hàm Câu 2: trang 176 sgk toán Đại số và giải tích 11Tính đạo hàm của các hàm số saua) \(y = 2\sqrt x {\mathop{\rm sinx}\nolimits} - {{\cos x} \over x}\)b) \(y = {{3\cos x} \over {2x + 1}}\)c) \(y = {{{t^2} + 2\cot t}
- Giải câu 4 bài 2: Giới hạn của hàm số Câu 4: trang 132 sgk toán Đại số và giải tích 11Tính các giới hạn sau:a) \(\underset{x\rightarrow 2}{lim}\) \(\frac{3x -5}{(x-2)^{2}}\);b) \(\underset{x\rightarrow 1^{-}}{lim}\) \(\frac{2x -7}{x-1}\);c)&
- Giải câu 3 bài 2: Quy tắc tính đạo hàm Câu 3: trang 163 sgk toán Đại số và giải tích 11Tìm đạo hàm của các hàm số sau:a) \(y = {({x^{7}} - 5{x^2})^3}\);b)\(y = ({x^2} + 1)(5 - 3{x^2})\);c) \(y = \frac{2x}{x^{2}-1}\);d) \(y = \frac{3-5x}{x^{2}-x+
- Giải câu 6 bài 2: Giới hạn của hàm số Câu 6: trang 133 sgk toán Đại số và giải tích 11Tính:\(\eqalign{& a)\mathop {\lim }\limits_{x \to + \infty } ({x^4} - {x^2} + x - 1) \cr & b)\mathop {\lim }\limits_{x \to - \infty } ( - 2{x^3} + 3{x^2} - 5) \cr 
- Giải câu 1 bài 2: Quy tắc tính đạo hàm Câu 1: trang 162 sgk toán Đại số và giải tích 11Bằng định nghĩa, tìm đạo hàm của các hàm số sau:a) \(y = 7 + x - x^2\) tại \(x_0 = 1\);b) \(y = x^3- 2x + 1\) tại \(x_0= 2\).
- Giải câu 2 bài 2: Quy tắc tính đạo hàm Câu 2: trang 163 sgk toán Đại số và giải tích 11Tìm đạo hàm của các hàm số sau:a) \(y = x^5- 4 x^3+ 2x - 3\);b) \(y = \frac{1}{4} - \frac{1}{3}x + x^2 - 0,5x^4\);c) \(y = \frac{x^{4}}{2}\)&
- Giải câu 4 bài 2: Quy tắc tính đạo hàm Câu 4: trang 163 sgk toán Đại số và giải tích 11Tìm đạo hàm của các hàm số sau:a) \(y = x^2 - x\sqrt x + 1\);b) \(y = \sqrt {(2 - 5x - x^2)}\);c) \(y = \frac{x^{3}}{\sqrt{a^{2}-x^{2}}}\) ( \(