Giải câu 6 bài 2: Cực trị của hàm số
Bài 6: Trang 18 - sgk giải tích 12
Xác định giá trị của tham số m để hàm số
đạt cực đại tại $x=2$.
Bài làm:
Cách 1: TXĐ: ![]()
Ta có
.
Do
nên ta có bảng biến thiên như sau:

Từ bảng biến thiên ta suy ra hàm số đạt cực đại tại ![]()
Từ giả thiết ta có
.
Vậy m=-3 thì thỏa mãn đề bài.
Cách 2:
Điều kiện cần: Vì hàm số đạt cực đại tại x=2 nên ![]()
Điều kiện đủ: Thử lại với m=-1, m=-3 thì chỉ có trường hợp m=-3 hàm số đạt cực đại tại x=2.
Xem thêm bài viết khác
- Giải câu 1 bài: Ôn tập chương 3
- Giải câu 1 bài: Phương trình mũ. Phương trình Lôgarit
- Giải bài 3: Ứng dụng của tích phân trong hình học
- Giải câu 2 bài: Hàm số lũy thừa
- Giải câu 4 bài 1: Sự đồng biến, nghịch biến của hàm số
- Dạng 1: Tìm điều kiện của tham số để hàm phân thức đồng biến trên từng khoảng xác định
- Giải câu 4 bài: Nguyên hàm
- Giải bài: Ôn tập chương 4 - số phức
- Dạng 1: Giải bất phương trình mũ và lôgarit bằng phương pháp đặt ẩn phụ
- Giải câu 3 bài 2: Cực trị của hàm số
- Giải câu 2 bài: Lôgarit
- Giải bài 3: Phép chia số phức