photos image 2014 10 31 tuong trong duong ham
- Để đo kích thước đường kính dây điện ta dùng Để đo kích thước đường kính dây điện ta dùng - Công nghệ 9 được giáo viên KhoaHoc giải đáp chi tiết trong bài viết dưới đây cùng với phần kiến thức mở rộng nhằm hỗ trợ học sinh trong quá trình học tập đạt kết quả cao. Xếp hạng: 3
- Nước nào đứng đầu trong cuộc phát kiến địa lí? Nước nào đứng đầu trong cuộc phát kiến địa lí? được Khoahoc sưu tầm và đăng tải. Mời các em tham khảo, chuẩn bị tốt cho bài giảng sắp tới Xếp hạng: 3
- Soạn bài Đẽo cày giữa đường Cánh Diều 7 tập 2 Soạn bài Đẽo cày giữa đường Cánh Diều 7 tập 2 với phần đáp án chi tiết, chính xác các câu hỏi trong bài được KhoaHoc giải đáp chi tiết trong bài viết dưới đây, mời các bạn cùng tham khảo nhằm nâng cao kết quả học môn Văn lớp 7. Xếp hạng: 3
- Soạn văn bài: Từ tượng hình, từ tượng thanh Từ tượng hình là từ gợi tả hình ảnh, dáng vẻ, trạng thái của sự vật. Từ tượng thanh là mô phỏng âm thanh của tự nhiên, con người. KhoaHoc sẽ tóm tắt những kiến thức trọng tâm và hướng dẫn soạn văn chi tiết các câu hỏi của bài. Mời các bạn cùng tham khảo. Xếp hạng: 3
- Giải câu 2 bài 2: Cực trị của hàm số Bài 2: Trang 18 - sgk giải tích 12Áp dụng quy tắc II, hãy tìm các điểm cực trị của các hàm số saua) $y=x^{4}-2x^{2}+1$;b) $y=\sin 2x-x$;c) $y=\sin x +\cos x$;d) $y=x^{5}-x^{3}-2x+1$. Xếp hạng: 3
- Giải câu 4 bài 2: Cực trị của hàm số Bài 4: Trang 18 - sgk giải tích 12Chứng minh rằng với mọi giá trị của tham số m, hàm số $y=x^{3}-mx^{2}-2x+1$ luôn luôn có một điểm cực đại và một điểm cực tiểu. Xếp hạng: 3
- Giải câu 1 bài 2: Cực trị của hàm số Bài 1: Trang 18 - sgk giải tích 12Áp dụng Quy tắc I, hãy tìm các điểm cực trị của các hàm số saua) $y=2x^{3}+3x^{2}-36x-10$.b) $y=x^{4}+2x^{2}-3$.c) $y=x+\frac{1}{x}$.d) $y=x^{3}(1-x^{2})$.e) $y=\sqrt{x^{2}-x+1}$ Xếp hạng: 3
- Giải câu 5 bài 2: Cực trị của hàm số Bài 5: Trang 18 - sgk giải tích 12Tìm a và b để các cực trị của hàm số $$y=\frac{5}{3}a^{2}x^{3}+2ax^{2}-9x+b$$ đều là những số dương và $x_{0}=-\frac{5}{9}$ là điểm cực đại. Xếp hạng: 3
- Giải câu 1 bài 2: Giới hạn của hàm số Câu 1: trang 132 sgk toán Đại số và giải tích 11Dùng định nghĩa tìm các giới hạn sau:a) \(\underset{x\rightarrow 4}{lim}\frac{x+1}{3x - 2}\);b) \(\underset{x \rightarrow +\infty }{lim}\frac{2-5x^{2}}{x^{2}+3} Xếp hạng: 3
- Giải câu 6 bài 2: Cực trị của hàm số Bài 6: Trang 18 - sgk giải tích 12Xác định giá trị của tham số m để hàm số $y=\frac{x^{2}+mx+1}{x+m}$ đạt cực đại tại $x=2$. Xếp hạng: 3
- Giải câu 3 bài 2: Cực trị của hàm số Bài 3: Trang 18 - sgk giải tích 12Chứng minh rằng hàm số $y=\sqrt{|x|}$ không có đạo hàm tại x=0 nhưng vẫn đạt cực tiểu tại điểm đó. Xếp hạng: 3
- Giải câu 2 bài 2: Giới hạn của hàm số Câu 2: trang 132 sgk toán Đại số và giải tích 11Cho hàm số\(f(x) = \left\{ \matrix{\sqrt x + 1 \text{ nếu }x\ge 0 \hfill \cr 2x\text{ nếu }x < 0 \hfill \cr} \right.\)Và các dãy số \((u_n)\) với Xếp hạng: 3
- Giải câu 3 bài 2: Giới hạn của hàm số Câu 3: trang 132 sgk toán Đại số và giải tích 11Tính các giới hạn sau:a) \(\underset{x\rightarrow -3}{lim}\) \(\frac{x^{2 }-1}{x+1}\);b) \(\underset{x\rightarrow -2}{lim}\) \(\frac{4-x^{2}}{x + 2}\);c)&n Xếp hạng: 3
- Giải câu 7 bài 2: Giới hạn của hàm số Câu 7: trang 133 sgk toán Đại số và giải tích 11Một thấu kính hội tụ có tiêu cự là \(f\). Gọi \(d\) và \(d'\) lần lượt là khoảng cách từ một vật thật \(AB\) và từ ảnh \(A'B'\) của nó tớ Xếp hạng: 3
- Giải câu 4 bài 2: Giới hạn của hàm số Câu 4: trang 132 sgk toán Đại số và giải tích 11Tính các giới hạn sau:a) \(\underset{x\rightarrow 2}{lim}\) \(\frac{3x -5}{(x-2)^{2}}\);b) \(\underset{x\rightarrow 1^{-}}{lim}\) \(\frac{2x -7}{x-1}\);c)& Xếp hạng: 3
- Giải câu 3 bài 2: Quy tắc tính đạo hàm Câu 3: trang 163 sgk toán Đại số và giải tích 11Tìm đạo hàm của các hàm số sau:a) \(y = {({x^{7}} - 5{x^2})^3}\);b)\(y = ({x^2} + 1)(5 - 3{x^2})\);c) \(y = \frac{2x}{x^{2}-1}\);d) \(y = \frac{3-5x}{x^{2}-x+ Xếp hạng: 3
- Giải câu 6 bài 2: Giới hạn của hàm số Câu 6: trang 133 sgk toán Đại số và giải tích 11Tính:\(\eqalign{& a)\mathop {\lim }\limits_{x \to + \infty } ({x^4} - {x^2} + x - 1) \cr & b)\mathop {\lim }\limits_{x \to - \infty } ( - 2{x^3} + 3{x^2} - 5) \cr  Xếp hạng: 3
- Giải câu 1 bài 2: Quy tắc tính đạo hàm Câu 1: trang 162 sgk toán Đại số và giải tích 11Bằng định nghĩa, tìm đạo hàm của các hàm số sau:a) \(y = 7 + x - x^2\) tại \(x_0 = 1\);b) \(y = x^3- 2x + 1\) tại \(x_0= 2\). Xếp hạng: 3
- Giải câu 2 bài 2: Quy tắc tính đạo hàm Câu 2: trang 163 sgk toán Đại số và giải tích 11Tìm đạo hàm của các hàm số sau:a) \(y = x^5- 4 x^3+ 2x - 3\);b) \(y = \frac{1}{4} - \frac{1}{3}x + x^2 - 0,5x^4\);c) \(y = \frac{x^{4}}{2}\)& Xếp hạng: 3