photos image 072011 15 Quaivatbien 2
- Giải câu 4 bài 2: Cực trị của hàm số Bài 4: Trang 18 - sgk giải tích 12Chứng minh rằng với mọi giá trị của tham số m, hàm số $y=x^{3}-mx^{2}-2x+1$ luôn luôn có một điểm cực đại và một điểm cực tiểu.
- Giải câu 4 bài 2 Sinh học 12 trang 14 Câu 4: Trang 14 - sgk Sinh học 9Một số đoạn gen có trình tự các nucleotit như sau:3‘ XGA GAA TTT XGA 5‘ (mạch mã gốc)5‘ GXT XTT AAA GXT 3‘a, Hãy xác định trình tự các a
- Giải câu 1 bài 2: Cực trị của hàm số Bài 1: Trang 18 - sgk giải tích 12Áp dụng Quy tắc I, hãy tìm các điểm cực trị của các hàm số saua) $y=2x^{3}+3x^{2}-36x-10$.b) $y=x^{4}+2x^{2}-3$.c) $y=x+\frac{1}{x}$.d) $y=x^{3}(1-x^{2})$.e) $y=\sqrt{x^{2}-x+1}$
- Giải câu 5 bài 2: Cực trị của hàm số Bài 5: Trang 18 - sgk giải tích 12Tìm a và b để các cực trị của hàm số $$y=\frac{5}{3}a^{2}x^{3}+2ax^{2}-9x+b$$ đều là những số dương và $x_{0}=-\frac{5}{9}$ là điểm cực đại.
- Giải câu 2 bài 21: Khái quát về nhóm Halogen Câu 2 : Trang 96 sgk hóa 10Đặc điểm nào dưới đây không phải là đặc điểm chung của các nguyên tố halogen (F, Cl, Br, I)?A. Nguyên tử có khả năng thu thêm 1e.B. Tạo ra hợp chất liên kết cộ
- Giải câu 6 bài 2: Cực trị của hàm số Bài 6: Trang 18 - sgk giải tích 12Xác định giá trị của tham số m để hàm số $y=\frac{x^{2}+mx+1}{x+m}$ đạt cực đại tại $x=2$.
- Giải Câu 2 Bài Câu hỏi trắc nghiệm chương 3 Câu 2: Trang 122 - SGK Hình học 11Tìm mệnh đề sai trong các mệnh đề sau đây:(A) Vì \(\overrightarrow {NM} + \overrightarrow {NP} = \overrightarrow 0 \) nên \(N\) là trung điểm của đoạn \(MP\)(B) Vì
- Giải câu 2 bài ôn tập chương 4: Giới hạn Câu 2: trang 141 sgk toán Đại số và giải tích 11Cho hai dãy số \((u_n)\) và \((v_n)\). Biết \(|u_n– 2| ≤ v_n\) với mọi \(n\) và \(\lim v_n=0\).Có kết luận gì về giới hạn của dãy số \((u_n)\)?
- Giải câu 3 bài 2: Quy tắc tính đạo hàm Câu 3: trang 163 sgk toán Đại số và giải tích 11Tìm đạo hàm của các hàm số sau:a) \(y = {({x^{7}} - 5{x^2})^3}\);b)\(y = ({x^2} + 1)(5 - 3{x^2})\);c) \(y = \frac{2x}{x^{2}-1}\);d) \(y = \frac{3-5x}{x^{2}-x+
- Giải câu 3 bài 2: Cực trị của hàm số Bài 3: Trang 18 - sgk giải tích 12Chứng minh rằng hàm số $y=\sqrt{|x|}$ không có đạo hàm tại x=0 nhưng vẫn đạt cực tiểu tại điểm đó.
- Giải câu 2 bài: Hàm số mũ. Hàm số Lôgarit Câu 2: Trang 77 - sgk giải tích 12Tính đạo hàm của các hàm số:a) $y=2xe^{x}+3\sin 2x$b) $y=5x^{2}+2^{x}\cos x$c) $y=\frac{x+1}{3^{x}}$
- Giải Câu 5 Bài 2: Hai đường thẳng vuông góc Câu 5: Trang 98 - SGK Hình học 11Cho hình chóp tam giác \(S.ABC\) có \(SA = SB = SC\) và có \(\widehat{ABC}= \widehat{BSC}=\widehat{CSA}.\) Chứng minh rằng \(SA ⊥ BC, SB ⊥ AC, SC ⊥ AB\).
- Giải Câu 2 Bài: Bài tập ôn tập chương 3 Câu 2: Trang 121 - SGK Hình học 11Trong các khẳng định sau đây, điều nào đúng?a) Khoảng cách của hai đường thẳng chéo nhau là đoạn ngắn nhất trong các đoạn thẳng nối hai điểm bất kì nằm
- Giải câu 5 bài 2: Quy tắc tính đạo hàm Câu 5: trang 163 sgk toán Đại số và giải tích 11Cho \(y = x^3-3x^2+ 2\).Tìm \(x\) để :a) \(y' > 0\)b) \(y' < 3\)
- Giải câu 2 bài Ôn tập chương 5: Đạo hàm Câu 2: trang 176 sgk toán Đại số và giải tích 11Tính đạo hàm của các hàm số saua) \(y = 2\sqrt x {\mathop{\rm sinx}\nolimits} - {{\cos x} \over x}\)b) \(y = {{3\cos x} \over {2x + 1}}\)c) \(y = {{{t^2} + 2\cot t}
- Giải Câu 4 Bài 2: Hai đường thẳng vuông góc Câu 4: Trang 98 - SGK Hình học 11Trong không gian cho hai tam giác đều \(ABC\) và \(ABC'\) có chung cạnh \(AB\) và nằm trong hai mặt phẳng khác nhau. Gọi \(M, N, P, Q\) lần lượt là trung điểm của các cạn
- Giải Câu 2 Bài Câu hỏi ôn tập chương 3 Câu 2: Trang 120 - SGK Hình học 11Trong không gian cho ba vecto \(\overrightarrow a ,\overrightarrow b ;\overrightarrow c \) đều khác vecto \(\overrightarrow 0 \) . Khi nào ba vecto đó đồng phẳng?
- Giải câu 2 bài 17: Phản ứng oxi hóa khử Câu 2. (Trang 83 SGK) Trong số các phản ứng sau :A. HNO3 + NaOH → NaNO3 + H2OB. N2O5 + H2O → 2HNO3C. 2HNO3 + 3H2S → 3S + 2NO + 4H2OD. 2Fe(OH)3 →(đk: to)  
- Giải Câu 1 Bài 2: Hai đường thẳng vuông góc Câu 1: Trang 97 - SGK Hình học 11Cho hình lập phương \(ABCD.EFGH\). Hãy xác định góc giữa các cặp vectơ sau đây:a) \(\overrightarrow{AB}\) và \(\overrightarrow{EG};\)
- Giải Câu 3 Bài 2: Hai đường thẳng vuông góc Câu 3: Trang 97 - SGK Hình học 11a) Trong không gian nếu hai đường thẳng a và b cùng vuông góc với đường thẳng c thì a và b có song song với nhau không?b) Trong không gian nếu đường thẳng a vuông gó
- Giải Câu 6 Bài 2: Hai đường thẳng vuông góc Câu 6: Trang 98 - SGK Hình học 11Trong không gian cho hai hình vuông \(ABCD\) và \(ABC'D'\) có chung cạnh \(AB\) và nằm trong hai mặt phẳng khác nhau, lần lượt có tâm \(O\) và \(O'\). Chứng minh rằng \(AB 
- Giải Câu 7 Bài 2: Hai đường thẳng vuông góc Câu 7: Trang 98 - SGK Hình học 11Cho \(S\) là diện tích tam giác \(ABC\). Chứng minh rằng: \(S=\frac{1}{2}\sqrt{\overrightarrow{AB}^{2}.\overrightarrow{AC}^{2}-(\overrightarrow{AB}.\overrightarrow{AC})^{2}}.\)
- Giải câu 1 bài 2: Quy tắc tính đạo hàm Câu 1: trang 162 sgk toán Đại số và giải tích 11Bằng định nghĩa, tìm đạo hàm của các hàm số sau:a) \(y = 7 + x - x^2\) tại \(x_0 = 1\);b) \(y = x^3- 2x + 1\) tại \(x_0= 2\).
- Giải câu 4 bài 2: Quy tắc tính đạo hàm Câu 4: trang 163 sgk toán Đại số và giải tích 11Tìm đạo hàm của các hàm số sau:a) \(y = x^2 - x\sqrt x + 1\);b) \(y = \sqrt {(2 - 5x - x^2)}\);c) \(y = \frac{x^{3}}{\sqrt{a^{2}-x^{2}}}\) ( \(