Giải Câu 6 Bài 2: Hai đường thẳng vuông góc
Câu 6: Trang 98 - SGK Hình học 11
Trong không gian cho hai hình vuông
và \(ABC'D'\) có chung cạnh \(AB\) và nằm trong hai mặt phẳng khác nhau, lần lượt có tâm \(O\) và \(O'\). Chứng minh rằng \(AB ⊥ OO'\) và tứ giác \(CDD'C'\) là hình chữ nhật.
Bài làm:

Gọi cạnh của hai hình vuông bằng nhau ABCD và ABC'D" là
.
- Ta có:

![]()
![]()
![]()
.
Vậy
.
- Ta có:

![]()
![]()
![]()
.
=>
(1)
- Mặt khác:
song song và bằng \(C'D'\) (do ABCD và ABC'D' là hai hình vuông bằng nhau)
=>
là hình bình hành (2)
Từ (1) (2) =>
là hình chữ nhật.
Xem thêm bài viết khác
- Giải Câu 8 Bài Câu hỏi trắc nghiệm chương 3
- Giải bài 5: Phép chiếu song song. Hình biểu diễn của một hình không gian
- Giải Câu 7 Bài 3: Đường thẳng vuông góc với mặt phẳng
- Giải câu 6 bài 1: Đại cương về đường thẳng và mặt phẳng
- Giải Câu 10 Bài 4: Hai mặt phẳng vuông góc
- Giải Câu 11 Bài 4: Hai mặt phẳng vuông góc
- Giải câu 1 bài 5: Phép quay
- Giải Câu 5 Bài 2: Hai đường thẳng vuông góc
- Giải Câu 4 Bài 2: Hai đường thẳng vuông góc
- Giải bài 4: Hai mặt phẳng song song
- Giải câu 3 bài 4: Hai mặt phẳng song song
- Giải Câu 1 Bài Câu hỏi trắc nghiệm chương 3