photos image 072011 11 dongvat 3
- Giải toán 3 bài: Ôn tập về đại lượng trang 172 sgk Hôm nay, chúng ta cùng đến với bài ôn tập về đại lượng. Khi nói đến đại lượng chúng ta có thể liên tưởng đến các đơn vị đo khối lượng, đơn vị đo thời gian...Vậy để các con nắm bài tốt hơn, chúng ta cùng bắt đầu đến với bài học. Xếp hạng: 3
- Giải câu 3 Bài 36: Sơ lược về niken, kẽm, chì, thiếc Câu 3. (Trang 163 SGK) Cho 32 gam hỗn hợp gồm MgO, Fe2O3, CuO tác dụng vừa đủ với 300 ml dung dịch H2SO4 2M. Khối lượng muối thu được là A.60 gam.B. 80 gam.C. 85 gam.D. 90 gam. Xếp hạng: 3
- Giải toán 3 bài: Ôn tập về hình học trang 174 sgk Trong cuộc sống chúng ta thường bắt gặp nhiều đồ vật có các hình dạng khác nhau, như hình vuông, hình chữ nhật...Vậy để tính diện tích hay chu vi các hình đó, các con sẽ làm như thế nào? Chắc chắn các con sẽ biết đúng không vì bài này chúng ta đều đã được học. Tuy nhiên, để các con làm bài kiểm tra cuối năm tốt hơn, chúng ta sẽ cùng ôn lại dạng toán này ngay sau đây. Xếp hạng: 3
- Giải toán 3 bài: Ôn tập về giải toán trang 176 sgk Trong toán học, bên cạnh việc các con thực hiện các phép tính nhẩm, tính cộng trừ nhân chia, các con còn phải thực hiện các bài giải toán khác nhau có đẩy đủ lời giải và các phép tính. Vậy làm như thế nào để lời giải cũng như các phép tính của mình trong bài toán chính xác nhất. Chúng ta cùng ôn lại bài ôn tập về giải toán. Xếp hạng: 3
- Giải câu 3 bài 20: Mở đầu về hóa học hữu cơ Câu 3. (Trang 91 /SGK)Oxi hoá hoàn toàn 0,6 gam hợp chất hữu cơ A thu được 0,672 lít CO2 (đktc) và 0,72 gam H2O. Tính thành phần phần trăm khối lượng của các nguyên tố trong phân tử chất A. Xếp hạng: 3
- Giải câu 6 bài 3: Đạo hàm của hàm số lượng giác Câu 6: trang 169 sgk toán Đại số và giải tích 11Chứng minh rằng các hàm số sau có đạo hàm không phụ thuộc \(x\):a) \(\sin^6x + \cos^6x + 3\sin^2x.\cos^2x\)b) \({\cos ^2}\left ( \frac{\pi }{3}-x \right )+ {\cos ^ Xếp hạng: 3
- Giải câu 7 bài 3: Đạo hàm của hàm số lượng giác Câu 7: trang 169 sgk toán Đại số và giải tích 11Giải phương trình \(f'(x) = 0\), biết rằng:a) \(f(x) = 3\cos x + 4\sin x + 5x\)b) \(f(x) = 1 - \sin(π + x) + 2\cos \left ( \frac{2\pi +x}{2} \right )\) Xếp hạng: 3
- Giải câu 5 bài 3: Tích của vec tơ với một số Câu 5: Trang 17 - sgk hình học 10Gọi M và N lần lượt là trung điểm các cạnh AB và CD của tứ giác ABCD.Chứng minh rằng: $2\overrightarrow{MN}=\overrightarrow{AC}+ \overrightarrow{BD}=\overrightarrow{BC}+\ove Xếp hạng: 3
- Giải câu 7 bài 3: Tích của vec tơ với một số Câu 7: Trang 17 - sgk hình học 10Cho tam giác ABC. Tìm điểm M sao cho: $\overrightarrow{MA}+\overrightarrow{MB}+2\overrightarrow{MC}=\overline{0}$ Xếp hạng: 3
- Giải câu 3 bài: Ứng dụng của tích phân trong hình học Câu 3:Trang 121-sgk giải tích 12Parabol $y=\frac{x^{2}}{2}$ chia hình tròn có tâm tại gộc toạ độ, bán kính $2\sqrt{2}$ thành hai phần.Tìm tỉ số diện tích của chúng. Xếp hạng: 3
- Giải câu 4 bài 3: Đạo hàm của hàm số lượng giác Câu 4: trang 169 sgk toán Đại số và giải tích 11Tìm đạo hàm của các hàm số sau:a) \(y = \left( {9 - 2x} \right)(2{x^3} - 9{x^2} + 1)\)b) \(y = \left ( 6\sqrt{x} -\frac{1}{x^{2}}\right )(7x -3)\)c) \(y = (x -2)\sq Xếp hạng: 3
- Giải câu 8 bài 3: Đạo hàm của hàm số lượng giác Câu 8: trang 169 sgk toán Đại số và giải tích 11Giải bất phương trình \(f'(x) > g'(x)\), biết rằng:a) \(f(x) = x^3+ x - \sqrt2\,g(x) = 3x^2+ x + \sqrt2\)b) \(f(x) = 2x^3- x^2+ \sqrt3,g(x) = x^3+ \frac{x^{2}}{2 Xếp hạng: 3
- Giải câu 6 bài 3: Tích của vec tơ với một số Câu 6: Trang 17 - sgk hình học 10Cho hai điểm phân biệt A và B. Tìm điểm K sao cho: $3\overrightarrow{KA}+2\overrightarrow{KB}=\overrightarrow{0}$ Xếp hạng: 3
- Giải câu 3 bài: Phương trình bậc hai với hệ số thực Câu 3:Trang 140-sgk giải tích 12 Giải các phương trình sau trên tập hợp số phức:a) $x^{4}+x^{2}-6=0$b) $x^{4}+7x^{2}+10=0$ Xếp hạng: 3
- Giải câu 1 bài 3: Đạo hàm của hàm số lượng giác Câu 1: trang 168 sgk toán Đại số và giải tích 11Tìm đạo hàm của các hàm số sau:a) \(y = \frac{x-1}{5x-2}\)b) \(y = \frac{2x+3}{7-3x}\)c) \(y = \frac{x^{2}+2x+3}{3-4x}\)d) \(y = \frac{x^{2}+7x+3} Xếp hạng: 3
- Giải câu 2 bài 3: Đạo hàm của hàm số lượng giác Câu 2: trang 168 sgk toán Đại số và giải tích 11Giải các bất phương trình sau:a) \(y'<0\) với \({{{x^2} + x + 2} \over {x - 1}}\)b) \(y'≥0\) với \(y = \frac{x^{2}+3}{x+1}\)c) \(y'>0\) với \(y = \ Xếp hạng: 3
- Giải Câu 2 Bài 3: Đường thẳng vuông góc với mặt phẳng Câu 2: Trang 104 - SGK Hình học 11Cho tứ diện ABCD có hai mặt ABC và BCD là hai tam giác cân có chung đáy BC. Gọi I là trung điểm của cạnh BC.a) Chứng minh rằng BC vuông góc với mặt phẳng (ADI)b) Gọ Xếp hạng: 3
- Giải câu 5 bài 3: Đạo hàm của hàm số lượng giác Câu 5: trang 169 sgk toán Đại số và giải tích 11Tính \( \frac{f'(1)}{\varphi '(1)}\), biết rằng \(f(x) = x^2\) và \(φ(x) = 4x +sin \frac{\pi x}{2}\) Xếp hạng: 3
- Giải Câu 1 Bài 3: Đường thẳng vuông góc với mặt phẳng Câu 1: Trang 104 - SGK Hình học 11Cho hai đường thẳng phân biệt \(a,b\) và mặt phẳng \((\alpha)\). Các mệnh đề sau đây đúng hay sai?a) Nếu \(a//(\alpha)\) và \(b\bot (\alpha)\) thì \(a\bot b\)b) Nếu \(a//(\ Xếp hạng: 3