photos image 2014 11 06 lo may 3
- Giải câu 6 bài 3: Đạo hàm của hàm số lượng giác Câu 6: trang 169 sgk toán Đại số và giải tích 11Chứng minh rằng các hàm số sau có đạo hàm không phụ thuộc \(x\):a) \(\sin^6x + \cos^6x + 3\sin^2x.\cos^2x\)b) \({\cos ^2}\left ( \frac{\pi }{3}-x \right )+ {\cos ^ Xếp hạng: 3
- Giải câu 7 bài 3: Đạo hàm của hàm số lượng giác Câu 7: trang 169 sgk toán Đại số và giải tích 11Giải phương trình \(f'(x) = 0\), biết rằng:a) \(f(x) = 3\cos x + 4\sin x + 5x\)b) \(f(x) = 1 - \sin(π + x) + 2\cos \left ( \frac{2\pi +x}{2} \right )\) Xếp hạng: 3
- Giải câu 2 bài 3: Đường thẳng và mặt phẳng song song Câu 2: Trang 63 - SGK hình học 11Cho tứ diện ABCD. Trên cạnh AB lấy một điểm M. Cho (α) là mặt phẳng qua M, song song với hai đường thẳng AC và BDa) Tìm giao tuyến của (α) với các mặt tứ diệnb Xếp hạng: 3
- Giải Câu 5 Bài 3: Đường thẳng vuông góc với mặt phẳng Câu 5: Trang 105 - SGK Hình học 11Trên mặt phẳng \((α)\) cho hình bình hành \(ABCD\). Gọi \(O\) là giao điểm của \(AC\) và \(BD\). \(S\) là một điểm nằm ngoài mặt phẳng \((α)\) sao cho \(SA = SC, SB = SD\ Xếp hạng: 3
- Giải câu 1 bài 3: Tích của vec tơ với một số Câu 1: Trang 17 - sgk hình học 10Cho hình bình hành ABCD. Chứng minh rằng: $\overrightarrow{AB}+ \overrightarrow{AC}+\overrightarrow{AD}=2\overrightarrow{AC}$ Xếp hạng: 3
- Giải câu 4 bài 3: Đạo hàm của hàm số lượng giác Câu 4: trang 169 sgk toán Đại số và giải tích 11Tìm đạo hàm của các hàm số sau:a) \(y = \left( {9 - 2x} \right)(2{x^3} - 9{x^2} + 1)\)b) \(y = \left ( 6\sqrt{x} -\frac{1}{x^{2}}\right )(7x -3)\)c) \(y = (x -2)\sq Xếp hạng: 3
- Giải câu 8 bài 3: Đạo hàm của hàm số lượng giác Câu 8: trang 169 sgk toán Đại số và giải tích 11Giải bất phương trình \(f'(x) > g'(x)\), biết rằng:a) \(f(x) = x^3+ x - \sqrt2\,g(x) = 3x^2+ x + \sqrt2\)b) \(f(x) = 2x^3- x^2+ \sqrt3,g(x) = x^3+ \frac{x^{2}}{2 Xếp hạng: 3
- Giải Câu 6 Bài 3: Đường thẳng vuông góc với mặt phẳng Câu 6: Trang 105 - SGK Hình học 11Cho hình chóp \(S.ABCD\) có đáy là hình thoi \(ABCD\) và có cạnh \(SA\) vuông góc với mặt phẳng \((ABCD)\). Gọi \(I\) và \(K\) là hai điểm lần lượt lấy trên hai cạnh Xếp hạng: 3
- Giải Câu 7 Bài 3: Đường thẳng vuông góc với mặt phẳng Câu 7: Trang 105 - SGK Hình học 11Cho tứ diện \(SABC\) có cạnh \(SA\) vuông góc với mặt phẳng \((ABC)\) và có tam giác \(ABC\) vuông tại \(B\). Trong mặt phẳng \((SAB)\) kẻ từ \(AM\) vuông góc với \(SB\) Xếp hạng: 3
- Giải câu 2 bài 3: Tích của vec tơ với một số Câu 2: Trang 17 - sgk hình học 10Cho AK và BM là hai trung tuyến của tam giác ABC.Hãy phân tích các vectơ $\overrightarrow{AB}, \overrightarrow{BC},\overrightarrow{CA}$ theo haivectơ $\overrightarrow{u}=\overright Xếp hạng: 3
- Giải câu 5 bài 3: Tích của vec tơ với một số Câu 5: Trang 17 - sgk hình học 10Gọi M và N lần lượt là trung điểm các cạnh AB và CD của tứ giác ABCD.Chứng minh rằng: $2\overrightarrow{MN}=\overrightarrow{AC}+ \overrightarrow{BD}=\overrightarrow{BC}+\ove Xếp hạng: 3
- Giải câu 7 bài 3: Tích của vec tơ với một số Câu 7: Trang 17 - sgk hình học 10Cho tam giác ABC. Tìm điểm M sao cho: $\overrightarrow{MA}+\overrightarrow{MB}+2\overrightarrow{MC}=\overline{0}$ Xếp hạng: 3
- Giải câu 1 bài 3: Đạo hàm của hàm số lượng giác Câu 1: trang 168 sgk toán Đại số và giải tích 11Tìm đạo hàm của các hàm số sau:a) \(y = \frac{x-1}{5x-2}\)b) \(y = \frac{2x+3}{7-3x}\)c) \(y = \frac{x^{2}+2x+3}{3-4x}\)d) \(y = \frac{x^{2}+7x+3} Xếp hạng: 3
- Giải câu 2 bài 3: Đạo hàm của hàm số lượng giác Câu 2: trang 168 sgk toán Đại số và giải tích 11Giải các bất phương trình sau:a) \(y'<0\) với \({{{x^2} + x + 2} \over {x - 1}}\)b) \(y'≥0\) với \(y = \frac{x^{2}+3}{x+1}\)c) \(y'>0\) với \(y = \ Xếp hạng: 3
- Giải Câu 2 Bài 3: Đường thẳng vuông góc với mặt phẳng Câu 2: Trang 104 - SGK Hình học 11Cho tứ diện ABCD có hai mặt ABC và BCD là hai tam giác cân có chung đáy BC. Gọi I là trung điểm của cạnh BC.a) Chứng minh rằng BC vuông góc với mặt phẳng (ADI)b) Gọ Xếp hạng: 3
- Giải câu 6 bài 3: Tích của vec tơ với một số Câu 6: Trang 17 - sgk hình học 10Cho hai điểm phân biệt A và B. Tìm điểm K sao cho: $3\overrightarrow{KA}+2\overrightarrow{KB}=\overrightarrow{0}$ Xếp hạng: 3
- Giải câu 5 bài 3: Đạo hàm của hàm số lượng giác Câu 5: trang 169 sgk toán Đại số và giải tích 11Tính \( \frac{f'(1)}{\varphi '(1)}\), biết rằng \(f(x) = x^2\) và \(φ(x) = 4x +sin \frac{\pi x}{2}\) Xếp hạng: 3
- Giải Câu 1 Bài 3: Đường thẳng vuông góc với mặt phẳng Câu 1: Trang 104 - SGK Hình học 11Cho hai đường thẳng phân biệt \(a,b\) và mặt phẳng \((\alpha)\). Các mệnh đề sau đây đúng hay sai?a) Nếu \(a//(\alpha)\) và \(b\bot (\alpha)\) thì \(a\bot b\)b) Nếu \(a//(\ Xếp hạng: 3
- Giải câu 4 bài 3: Tích của vec tơ với một số Câu 4: Trang 17 - sgk hình học 10Gọi AM là trung tuyến của tam giác ABC và D là trung điểm của đoạn AM.Chứng minh rằng:a) $2\overrightarrow{DA}=\overrightarrow{DB}+ \overrightarrow{DC}=\overrightarrow{0}$b)&nb Xếp hạng: 3