Giải câu 3 trang 126 toán VNEN 8 tập 1
Câu 3: Trang 126 toán VNEN 8 tập 1
a) Cho tam giác đều cạnh a. Hãy tính diện tích tam giác này theo a.
b) Cho tam giác cân có cạnh đáy là a, cạnh bên là b. Hãy tính diện tích tam giác này theo a và b.
Bài làm:
a)

Xét tam giác ABC đều có cạnh bằng a, đường cao AH.
Vì tam giác ABC đều nên đường cao AH đồng thời là đường trung tuyến
BH = $\frac{BC}{2}$ = $\frac{a}{2}$.
Áp dụng định lí Pi-ta-go vào tam giác AHB vuông tại H, ta có:
AH =
= $\sqrt{a^{2} – (\frac{a}{2})^{2}}$ = $\frac{a\sqrt{3}}{2}$.
Như vậy: S
= $\frac{AH.BC}{2}$ = $\frac{1}{2}$.$\frac{a\sqrt{3}}{2}$.a = $\frac{a^{2}\sqrt{3}}{4}$.
b)

Xét tam giác DEF cân tại D có cạnh đáy bằng a, cạnh bên bằng b, đường cao DK.
Vì tam giác DEF cân tại D nên đường cao DK đồng thời là đường trung tuyến
DK = $\frac{EF}{2}$ = $\frac{a}{2}$.
Áp dụng định lí Pi-ta-go vào tam giác DKE vuông tại K, ta có:
DK =
= $\sqrt{b^{2} – (\frac{a}{2})^{2}}$ = $\sqrt{b^{2} – \frac{a^{2}}{4}}$.
Như vậy: S
= $\frac{DK.EF}{2}$ = $\frac{1}{2}$.($\sqrt{b^{2} – \frac{a^{2}}{4}}$).b = $\frac{b\sqrt{b^{2} – \frac{a^{2}}{4}}}{2}$.
Xem thêm bài viết khác
- Giải phần D. Hoạt động vận dụng trang 141, 142 sách Toán Vnen 8 tập 1
- Giải câu 5 trang 48 toán VNEN 8 tập 1
- Giải câu 3 Trang 43 sách VNEN toán 8 tập 1
- Giải câu 2 trang 55 toán VNEN 8 tập 1
- Giải câu 2 trang 15 toán VNEN 8 tập 1
- Giải câu 3 trang 136 toán VNEN 8 tập 1
- Giải câu 2 trang 26 toán VNEN 8 tập 1
- Giải câu 4 trang 54 toán VNEN 8 tập 1
- Giải câu 4 trang 58 toán VNEN 8 tập 1
- Giải câu 3 trang 126 toán VNEN 8 tập 1
- Giải VNEN toán 8 bài 5: Những hằng đẳng thức đáng nhớ (tiếp)
- Giải câu 2 trang 59 toán VNEN 8 tập 1 trắc nghiệm