Giải Câu 5 Bài: Bài tập ôn tập chương 3
Câu 5: Trang 121 - SGK Hình học 11
Tứ diện
có hai mặt \(ABC\) và \(ADC\) nằm trong hai mặt phẳng vuông góc với nhau. Tam giác \(ABC\) vuông tại \(A\) có \(AB = a, AC = b\). Tam giác \(ADC\) vuông tại \(D\) có \(CD = a\).
a) Chứng minh các tam giác
và \(BDC\) đều là tam giác vuông
b) Gọi
và \(K\) lần lượt là trung điểm của \(AD\) và \(BC\). Chứng minh \(IK\) là đoạn vuông góc chung của hai đường thẳng \(AD\) và \(BC\).
Bài làm:

a)
- Chứng minh
vuông
Theo giả thiết:
mà hai mặt phẳng này giao nhau theo giao tuyến \(AC\).
Ta lại có
và \(BA⊥ AC\) nên \(BA⊥(ADC)\)
Vì
vuông tại \(A\)
- Chứng minh:
vuông
![]()
(Định lí 3 đường vuông góc)
vuông tại \(D\)
b) Chứng minh:
là đoạn vuông góc chung của $AD,BC$
Xét
và $\Delta CAD$ có:
![]()
chung
![]()
=> ![]()
=>
(hai trung tuyến tương ứng của hai tam giác bằng nhau)
=>
cân tại $I$
có:
là trung điểm $BC$ => $IK$ đồng thời là đường cao trong $\Delta IBC$
=>
(1)
Chứng minh tương tự, ta có: ![]()
=> ![]()
=>
cân tại $K$
có:
là trung điểm $AD$ => $KI$ đồng thời là đường cao trong $\Delta KAD$
=>
(2)
Từ (1) (2) =>
là đoạn vuông góc chung của $AD.BC$.
Xem thêm bài viết khác
- Giải Câu 6 Bài 5: Khoảng cách
- Giải Bài 3: Đường thẳng vuông góc với mặt phẳng
- Giải bài 1: Đại cương về đường thẳng và mặt phẳng
- Giải bài: Ôn tập chương I - phép dời hình và phép đồng dạng trên mặt phẳng
- Giải câu 1 bài 3: Phép đối xứng trục
- Giải Câu 10 Bài 1: Vecto trong không gian
- Giải Câu 8 Bài 5: Khoảng cách
- Giải bài 5: Phép chiếu song song. Hình biểu diễn của một hình không gian
- Giải câu 6 bài 1: Đại cương về đường thẳng và mặt phẳng
- Giải Câu 4 Bài 4: Hai mặt phẳng vuông góc
- Giải câu 3 bài 3: Phép đối xứng trục
- Giải câu 4 bài 1: Đại cương về đường thẳng và mặt phẳng