Giải câu 4 trang 114 toán VNEN 9 tập 2
Câu 4: Trang 114 toán VNEN 9 tập 2
Chứng minh rằng: Trong một tứ giác nội tiếp, góc ngoài tại một đỉnh bằng góc trong tại đỉnh đối của đỉnh đó. Ngược lại, tứ giác có góc ngoài tại một đỉnh bằng góc trong tại đỉnh đối của đỉnh đó là tứ giác nội tiếp.
Hướng dẫn: Xem hình 102

Nếu HIJK là tứ giác nội tiếp thì
.
Mặt khác,
và $\widehat{KJx}$ là hai góc kề bù, nên $\widehat{IJK} + \widehat{KJx} = 180^\circ$. Từ đó suy ra $....$
Ngược lại, nếu
thì $\widehat{IHK} + \widehat{IJK} = \widehat{IJK} + \widehat{KJx} = 180^\circ$
Từ đó suy ra HIJK ![]()
Bài làm:
Nếu HIJK là tứ giác nội tiếp thì
.
Mặt khác,
và $\widehat{KJx}$ là hai góc kề bù, nên $\widehat{IJK} + \widehat{KJx} = 180^\circ$. Từ đó suy ra $....$
Ngược lại, nếu
thì $\widehat{IHK} + \widehat{IJK} = \widehat{IJK} + \widehat{KJx} = 180^\circ$
Từ đó suy ra HIJK là tứ giác nội tiếp.
Xem thêm bài viết khác
- Giải câu 6 trang 151 toán VNEN 9 tập 2
- Giải câu 4 trang 151 toán VNEN 9 tập 2
- Giải câu 2 trang 79 toán VNEN 9 tập 2
- Giải câu 1 trang 130 toán VNEN 9 tập 2
- Giải VNEN toán 9 bài 4: Luyện tập Hình trụ - Hình nón - Hình cầu
- Giải VNEN toán 9 bài 1: Hình trụ - Diện tích xung quanh và thể tích hình trụ
- Giải câu 3 trang 61 toán VNEN 9 tập 2
- Giải câu 4 trang 114 toán VNEN 9 tập 2
- Giải câu 2 trang 53 sách toán VNEN lớp 9 tập 2
- Giải câu 5 trang 80 toán VNEN 9 tập 2
- Giải VNEN toán 9 bài 3: Hình cầu - Diện tích mặt cầu và thể tích của hình cầu
- Giải câu 4 trang 89 toán VNEN 9 tập 2