Dạng 2: Xét dấu các hệ số của hàm bậc ba, phân tích đồ thị hàm số.
Dạng 2: Xét dấu các hệ số của hàm bậc ba, phân tích đồ thị hàm số.
Bài làm:
I.Phương pháp giải
Xét đồ thị hàm số
.
a) Xác định dấu của a
Từ đồ thị, ta tìm được giới hạn
.Ta thấy:
.
.
b) Xác định dấu của d
Ta có M(0; d) là giao điểm của đồ thị hàm số với trục tung. Ta có:
- M nằm phía trên trục hoành
. - M nằm phía dưới trục hoành
. - M nằm trên trục hoành
.
c) Xác định dấu của b và c
Gọi lần lượt các điểm cực đại và cực tiểu của hàm số là
và $x_{CT}$. Vì
và $x_{CT}$ là nghiệm của phương trình $y^{'}=3ax^{2}+2bx+c=0$ nên $\left\{\begin{matrix}x_{CD} + x_{CT}=\frac{-2b}{3a}\\x_{CD}.x_{CT}=\frac{c}{3a} \end{matrix}\right.$
Xác định dấu của
hay dấu của $\frac{c}{a}$ từ đó tìm được dấu của c.
- Nếu các điểm cực trị của đồ thị nằm về cùng một phía với trục tung thì
> 0. - Nếu các điểm cực trị của đồ thị nằm về hai phía với trục tung thì
< 0. - Nếu một trong hai điểm cực trị thuộc trục tung thì
= 0.
Xác định dấu của
hay dấu của $\frac{-b}{a}$ từ đó tìm được dấu của b.
- Nếu các điểm cực trị của đồ thị nằm bên phải trục tung hoặc thuộc trục tung thì
; - Nếu các điểm cực trị của đồ thị nằm bên trái trục tung hoặc thuộc trục tung thì
; - Xét trường hợp hai điểm cực trị của đồ thị nằm về hai phía trục tung. Khi đó, nếu điểm cực trị có hoành độ âm gần trục tung hơn thì
, nếu điểm cực trị có hoành độ dương gần trục tung hơn thì $x_{CD} + x_{CT} < 0$, nếu hai điểm cực trị cách đều trục tung thì $x_{CD} + x_{CT} = 0.
II.Bài tập vận dụng
Bài tập 1: Hàm số
có đồ thị như hình bên. Xác định dấu của a, b, c, d.

Bài giải:
Ta thấy:
do đó a < 0.
Giao điểm của đồ thị hàm số với trục tung là điểm nằm trê trục hoành nên d < 0.
Gọi lần lượt các điểm cực đại và cực tiểu của hàm số là
và $x_{CT}$. Vì
và $x_{CT}$ là nghiệm của phương trình $y^{'}=3ax^{2}+2bx+c=0$ nên $\left\{\begin{matrix}x_{CD} + x_{CT}=\frac{-2b}{3a}\\x_{CD}.x_{CT}=\frac{c}{3a} \end{matrix}\right.$
Vì các điểm cực đại, cực tiểu của hàm số nằm về hai phía của Oy nên
< 0 do đó a và c trái dấu, nên c > 0.
Vì trong hai điểm cực trị, điểm có hoành độ âm gần trục tung hơn nên
> 0. Do đó a, b trái dấu, nên b > 0.
Vậy a < 0; b > 0; c > 0; d < 0.
Bài tập 2: Hàm số
có đồ thị như hình bên. Xác định dấu của a, b, c, d.

Bài giải:
Ta thấy:
do đó a >0.
Giao điểm của đồ thị hàm số với trục tung là điểm nằm trên trục hoành nên d = 0.
Gọi lần lượt các điểm cực đại và cực tiểu của hàm số là
và $x_{CT}$. Vì
và $x_{CT}$ là nghiệm của phương trình $y^{'}=3ax^{2}+2bx+c=0$ nên $\left\{\begin{matrix}x_{CD} + x_{CT}=\frac{-2b}{3a}\\x_{CD}.x_{CT}=\frac{c}{3a} \end{matrix}\right.$
Vì các điểm cực đại, cực tiểu của hàm số nằm về hai phía của Oy nên
< 0 do đó a và c trái dấu, nên c > 0.
Vì hai điểm cưcj trị cách đều trục tung nên
= 0. Do đó b = 0.
Vậy a > 0; b = 0; c < 0; d = 0.
Xem thêm bài viết khác
- Giải câu 1 bài: Hàm số mũ. Hàm số Lôgarit
- Dạng 2: Giải phương trình mũ và lôgarit bằng phương pháp lôgarit hai vế
- Giải bài 6: Bất phương trình mũ và lôgarit
- Giải câu 2 bài 4: Đường tiệm cận
- Giải câu 5 bài: Phương trình bậc hai với hệ số thực
- Giải câu 2 bài: Ôn tập chương 2
- Dạng 3: Giải phương trình mũ và lôgarit bằng phương pháp hàm số
- Giải câu 3 bài: Lôgarit
- Giải câu 5 bài: Tích phân
- Dạng 2: Dùng tính đơn điệu để chứng minh bất đẳng thức chứa mũ và lôgarit
- Giải câu 7 bài 5: Khảo sát sự biến thiên và vẽ đồ thị của hàm số
- Dạng 2: Bài toán lãi kép sử dụng lôgarit