Giải câu 7 bài: Ôn tập chương II
Câu 7: Trang 50 - sgk đại số 10
Xác định tọa độ giao điểm của parabol
với trục tung. Tìm điều kiện để parabol này cắt trục hoành tại hai điểm phân biệt, tại mỗi điểm và viết tọa độ của các giao điểm trong mỗi trường hợp.
Bài làm:
Trục tung có phương trình x = 0. Tọa độ giao điểm của parabol với trục tung là nghiệm của hệ phương trình:
![]()
=> ![]()
Vậy tọa độ giao điểm của parabol với trục tung là B(0; c).
Hoành độ giao điểm của parabol và trục hoành là nghiệm của phương trình:
(1)
Để parabol cắt trục hoành tại hai điểm phân biệt thì phương trình (1) phải có 2 nghiệm phân biệt.
=> ![]()
=> Tọa độ hai giao điểm là:
và $A_{2}=(\frac{-b+\sqrt{\Delta }}{2a};0)$
Xem thêm bài viết khác
- Giải bài 2: Biểu đồ – sgk Đại số 10 trang 115
- Giải câu 2 bài: Ôn tập chương III
- Giải câu 10 bài Ôn tập chương 5 – sgk Đại số 10 trang 131
- Giải câu 6 bài 2: Phương trình quy về phương trình bậc nhất, bậc hai
- Phần câu hỏi Ôn tập cuối năm – sgk Đại số 10 trang 159
- Toán 10: Đề kiểm tra học kì 2 dạng trắc nghiệm (Đề 3)
- Giải câu 4 bài 3: Công thức lượng giác sgk Đại số 10 trang 154
- Giải bài 3: Công thức lượng giác – sgk Đại số 10 trang 149
- Giải câu 7 bài 3: Công thức lượng giác sgk Đại số 10 trang 155
- Giải câu 2 bài 1: Bất đẳng thức sgk Đại số 10 trang 79
- Giải câu 5 bài 3: Phương trình và hệ phương trình bậc nhất nhiều ẩn
- Giải câu 10 bài: Ôn tập chương III