Giải Câu 4 Bài Câu hỏi ôn tập chương 3
Câu 4: Trang 120 - SGK Hình học 11
Muốn chứng minh đường thẳng
vuông góc với mặt phẳng \((α)\) thì người ta cần chứng minh
vuông góc với mọi đường thẳng của mặt phẳng \(α\) hay không?
Bài làm:
Muốn chứng minh đường thẳng
vuông góc với mặt phẳng \((α)\) thì ta không cần phải chứng minh
vuông góc với mọi đường thẳng của mặt phẳng \((α)\).
Muốn chứng minh
ta chỉ cần chứng minh
vuông góc với hai đường thẳng cắt nhau nằm trong $(\alpha )$
Tức là: \(\left\{ \matrix{
a \bot b,b \subset (\alpha ) \hfill \cr
a \bot c,c \subset (\alpha ) \hfill \cr
b \cap c \hfill \cr} \right. \Rightarrow a \bot (\alpha )\)
Xem thêm bài viết khác
- Giải câu 10 bài 1: Đại cương về đường thẳng và mặt phẳng
- Giải câu 3 bài 3: Đường thẳng và mặt phẳng song song
- Giải bài 5: Phép quay
- Giải bài 4: Phép đối xứng tâm
- Giải bài: Ôn tập chương I - phép dời hình và phép đồng dạng trên mặt phẳng
- Giải Câu 1 Bài 2: Hai đường thẳng vuông góc
- Giải Bài Ôn tập cuối năm
- Giải Câu 5 Bài Câu hỏi trắc nghiệm chương 3
- Giải Câu 8 Bài 4: Hai mặt phẳng vuông góc
- Giải Câu 3 Bài 2: Hai đường thẳng vuông góc
- Giải câu 3 bài 4: Hai mặt phẳng song song
- Giải câu 3 bài 2: Phép tịnh tiến