Giải câu 26 Bài 3: Góc nội tiếp sgk Toán 9 tập 2 Trang 76
Câu 26: Trang 76 - SGK Toán 9 tập 2
Cho AB, BC, CA là ba dây của đường tròn (O). Từ điểm chính giữa M của cung AB vẽ dây MN song song với dây BC.Gọi giao điểm của MN và AC là S.Chứng minh SM = SC và SN = SA.
Bài làm:
M là điểm chính giữa cung AB (gt) => cung MA = cung MB.
MN // BC => cung MB = cung NC (hai dây song song chắn 2 cung bằng nhau)
Suy ra: cung MA = cung NC (= cung MB)
=> = $\widehat{CMN}$ (định lý về góc nội tiếp chắn cung)
Vậy tam giác SMC là tam giác cân tại S, suy ra SM = SC.
Chứng minh tương tự, ta có tam giác SAN cân tại S => SN = SA
Xem thêm bài viết khác
- Giải câu 49 Bài: Luyện tập sgk Toán 9 tập 2 Trang 87
- Đáp án câu 1 đề 2 kiểm tra học kì 2 Toán 9
- Giải câu 13 Bài 2: Sự liên hệ giữa cung và dây sgk Toán 9 tập 2 Trang 72
- Toán 9: Đề kiểm tra học kì 2 (Đề 6)
- Giải câu 57 Bài: Luyện tập sgk Toán 9 tập 2 Trang 89
- Giải câu 22 bài: Luyện tập sgk Toán đại 9 tập 2 Trang 19
- Lời giải bài 61 Ôn tập chương 4 Đại số 9 Trang 63,64 SGK
- Giải câu 49 bài: Luyện tập sgk Toán đại 9 tập 2 Trang 59
- Đáp án câu 1 đề 10 kiểm tra học kì 2 Toán 9
- Giải câu 17 bài: Luyện tập sgk Toán đại 9 tập 2 Trang 16
- Giải câu 69 Bài 9: Độ dài đường tròn, cung tròn sgk Toán 9 tập 2 Trang 95
- Giải câu 26 bài: Luyện tập sgk Toán đại 9 tập 2 Trang 19