Biểu diễn hình học của số phức
Dạng 2: Biểu diễn hình học của số phức
Bài làm:
Bài tập 1: Tìm tập hợp các điểm biểu diễn số phức
sao cho $u=\frac{z+2+3i}{z-i}$ là một số thuần ảo?
Bài giải:
Đặt
. Khi đó
$=\frac{[(x+2)+(y+3)i][x-(y-1)i]}{x^2+(y-1)^2}$.
là số thuần ảo $\Leftrightarrow \left\{\begin{matrix}x^2+y^2+2x+2y-3=0\\x^2+(y-1)^2 >0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix}(x+1)^2+(y+1)^2=5\\(x;y)\neq (0;1) \end{matrix}\right.$
Vậy tập hợp các điểm biểu diễn của
là đường tròn tâm I(-1;-1), bán kính $\sqrt{5}$ trừ điểm (0;1).
Bài tập 2: Tìm tập hợp số phức
thoả mãn $|z-3i|+|i\bar{z}+3|=10.$
Bài giải:
Gọi
. Theo bài ra ta có:
![]()
![]()
![]()
.
Vậy tập hợp các điểm trong mặt phẳng Oxy biểu diễn số phức
là Elip: $\frac{x^2}{16}+\frac{y^2}{25}=1.$
Xem thêm bài viết khác
- Dạng 1: Tính diện tích hình phẳng giới hạn bởi hai đường y=f(x) và y=g(x).
- Tìm điều kiện của tham số để hàm số có hai cực trị thoả mãn điều kiện nào đấy.
- Giải câu 3 bài: Ôn tập chương 4
- Giải câu 1 bài 3: Giá trị lớn nhất và giá trị nhỏ nhất của hàm số
- Giải bài 2: Hàm số lũy thừa
- Giải câu 1 bài 3: Lôgarit
- Dạng 4: Tính tích phân của phân thức có bậc của tử số lớn hơn bậc mẫu số.
- Giải bài 1: Nguyên hàm
- Giải câu 5 bài 5: Khảo sát sự biến thiên và vẽ đồ thị của hàm số
- Giải câu 1 bài: Lũy thừa
- Dạng 2: Tìm thể tích khối tròn xoay được giới hạn bởi đồ thị các hàm số y=f(x), y=g(x), y=h(x).
- Giải câu 5 bài: Cộng, trừ và nhân số phức